Перпендикуляр, проведений з вершини паралелограма до його діагоналі, ділить її на відрізки довжиною 6см і 15 см. Знайдіть площу паралелограма, якщо різниця його сторін – 7см
Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.
Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.
2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.
Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
наименьший угол - тот который лежит против меньшей стороны (9 см)
sin(a) = 9/41
cos(a) = 40/41
tg(a) = 9/40
ctg(a) = 40/9
2.
кос=катет:гипотенуза отсюда следует что катет=косинус*гипотенузу=20*0,8=16(см) по теореме Пифагора находим другой катет: катет(второй) в кв=гипотенуза в кв - катет(первый)в кв=20 в кв - 16 в кв=400-256=144 катет(второй)=12(см)
Дано:
Правильная четырёхугольная пирамида .
(см).
(см).
Найти:
(см²).
Значит сначала мы должны найти площадь основания пирамиды, а затем площадь боковой поверхности пирамиды.
В основании правильной четырёхугольной пирамиды лежит квадрат, поэтому (см²).
Площадь боковой поверхности правильной четырёхугольной пирамиды - полупроизведение периметра основания на апофему.
Значит нам нужно сначала найти апофему нашей пирамиды.
1 правило: Апофема делит сторону основания пополам.
2 правило: Катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.
Объяснение 1 правила: из этого следует, что апофема делит сторону основания так, что (см).
Объяснение 2 правила: внутри нашей пирамиды образовался прямоугольный , где - катет прямоугольного тр-ка (высота пирамиды); - катет прямоугольного тр-ка; - гипотенуза прямоугольного тр-ка (апофема пирамиды). По данному правилу можно сказать, что (см).
1.
наименьший угол - тот который лежит против меньшей стороны (9 см)
sin(a) = 9/41
cos(a) = 40/41
tg(a) = 9/40
ctg(a) = 40/9
2.
кос=катет:гипотенуза
отсюда следует что катет=косинус*гипотенузу=20*0,8=16(см)
по теореме Пифагора находим другой катет:
катет(второй) в кв=гипотенуза в кв - катет(первый)в кв=20 в кв - 16 в кв=400-256=144
катет(второй)=12(см)
3.
tg(a) = 2.5 / 2.5√(3) = 1 / √(3)
a = arctg(a) = arctg(1 / √(3)) = 30°
tg(B) = 2.5√(3) / 2.5 = √(3)
B = arctg(B) = arctg(√(3)) = 60°