Перпендикуляр, проведений з вершини прямокутника до діагоналі, ділить її у відношенні 1:3. Знайдіть довжину меншої сторони прямокутника, якщо довжина його діагоналі дорівнює .
Или же
Перпендикуляр, проведенный из вершины прямоугольника к диагонали, делит ее в отношении 1: 3. Найдите длину меньшей стороны прямоугольника, если длина его диагонали равен
Доказательство:
К и М - середины боковых сторон трапеции ABCD, КМ - ее средняя линия.
Проведем прямую ВМ.
ВМ ∩ AD = N.
CM = MD по условию,
∠BCМ = ∠NDM как накрест лежащие при пересечении параллельных AN и ВС секущей CD,
∠BMC = ∠NMD как вертикальные, ⇒
ΔBMC = ΔNMD по стороне и двум прилежащим к ней углам.
Значит, ВМ = MN, то есть КМ - средняя линия треугольника ABN, следовательно КМ║AN, а значит и КМ║AD.
Из равенства треугольников следует, что
DN = BC = b, значит AN = AD + BC = a + b,
а KM = AN/2 = (a + b)/2 как средняя линия треугольника ABN.
.
Обозначим АВ=с, ВС=а.
Возведём в квадрат:
Отсюда а*с=36+12=48 (1).
Биссектриса делит сторону АС пропорционально боковым сторонам.
3/с = 4/а
или с = (3/4)*а.
Подставим в уравнение (1):
а*((3/4)*а) = 48
а² =(48*4) / 3 = 64
а = √64 = 8.
с = (3*8) / 4 =6.
Находим радиус окружности, вписанной в треугольник АВС:
Аналогично находим радиус окружности, вписанной в треугольник
ДВС: r₁=1,290994.
Разность r - r₁ = 0,645498.
По теореме косинусов находим величину угла С:
.
С = 0.812756 радиан = 46.56746°.
Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С.
Тангенс угла С/2 = tg(46.56746 / 2) = tg 23.28373° = 0,43033.
Тогда длина отрезка КМ равна:
КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.