Перпендикулярність площин Знвайдыть площу ортогональної проекції трикутника АВС: АВ = ВС=6 см, якщо кут між площинами трикутника АВС та його ортогональної проєкцією дорівнює
Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
-----
Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2.
Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию
Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659
sin 15º=≈0,2588
S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади)
-----------
Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах
Этот вариант решения дан в приложении.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.