Треугольник BAD - равнобедренный с основанием BD, ведь его боковыми сторонами являются AB и AD, а они равны, т.к. все стороны ромба равны. Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов. Угол DCB = углу BAD, a угол CBA = углу CDA. => угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124 ответ: величина тупого угла = 124 градуса
Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок). Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов.
Угол DCB = углу BAD, a угол CBA = углу CDA.
=> угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124
ответ: величина тупого угла = 124 градуса
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.