Первое задание.
Найдите длину дуги окружности радиуса 15 см, если её градусная мера равна 36°.
Второе задание.
Сумма углов выпуклого многоугольника на 720° больше суммы его внешних углов, взятых по одному при каждой вершине. Найдите число сторон этого многоугольника.
Третье задание.
Радиус окружности, вписанной в квадрат, равен 1 дм. Чему равен радиус окружности, описанной около него.
Четвёртое задание.
В окружность вписан правильный шестиугольник, периметр которого 216 см. Найдите длину радиуса окружности.
Пятое задание.
На рисунке изображён сегмент круга с центром в точке О и радиусом, равным 12 см, <АОК=150°. Найдите площадь сегмента.
Подробное и полное решение каждого задания
Доказательство. Ограничимся доказательством случая 1.
Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.
Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
Свойства параллельных прямых:
Если параллельные прямые пересечены секущей, то накрест лежащие углы равны.
Если параллельные прямые пересечены секущей, то соответственные углы равны.
Если параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.
Признаки параллельности прямых:
Если накрест лежащие углы, образованные при пересечении двух прямых секущей, равны, то эти прямые параллельны.
Если соответственные углы, образованные при пересечении двух прямых секущей, равны, то эти прямые параллельны.
Если сумма односторонних углов, образованных при пересечении двух прямых секущей, равна 180°, то эти прямые параллельны.
Доказательство 1-го признака:
Дано: с∩а, с∩b, ∠1 = ∠2.
Доказать: a║b.
Доказательство:
Пусть А и В - точки пересечения прямой с с прямыми а и b соответственно. О - середина отрезка АВ.
Проведем через точку О прямую КН перпендикулярную прямой b.
АО = ОВ, ∠1 = ∠2 по условию, ∠АОН = ∠ВОК как вертикальные, значит ΔАОН = ΔВОК по стороне и двум прилежащим к ней углам.
Значит ∠ВКО = ∠АНО = 90°, т.е. КН⊥b и КН⊥а, а если две прямые перпендикулярны третьей, то они параллельны, т.е. a║b.