пишу олимпеаду я не шарю З довільної точки М катета АС прямокутного трикутника АВС Опущено перпендикуляр МК на гіпотенузу АВ.Доведіть, що Кут МКС=куту МВС
а) В правильном треугольнике СК - высота, биссектриса и медиана.
КН/НС=1/2 (свойство).
НN║KM, CN/NM=CH/HK=1/2. (теорема Фалеса)
SM=MC => MN=(1/3)*SM.
НР/PS=NM/MS=1/3 (теорема Фалеса).
Что и требовалось доказать.
б) Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Опустим перпендикуляр МТ на плоскость АВС. Основание этого перпендикуляра окажется на прямой СК, так как плоскость КSC перпендикулярна плоскости АВС.
В нашем случае искомый угол - это угол МКС, так как КТ - проекция прямой МК на плоскость АВС.
Высота СК правильного треугольника АВС (формула):
СК=(√3/2)*а = 3√3 (при стороне АВ=6).
КН=(1/3)*СК = √3.
SK=4 (так как треугольник ASK - пифагоров: АК=3, SA=5).
Дан треугольник АВС, <C=90.По теореме Пифагора гипотенуза АВ² = АС² + ВС², АВ² = 900 АВ=30. Проведём биссектрису ВЕ. Биссектриса делит сторону на части пропорциональные прилежашим сторонам, пусть Е точка пересечения биссектрисы и противолежащей стороны, меньший угол в треугольнике лежит напротив меньшей стороны. Меньшая сторона АС=18 см. Пусть АЕ=х, тогда ЕС= 18 -х. Составим пропорцию : АЕ/ЕС= 30/24 х/18-х = 5/4 Решим это уравнение, получим х=10, поэтому АЕ=10, ЕС=8 см. Рассмотрим треугольник ВЕС, <C = 90, по теореме Пифагора, получим, ВЕ² = ЕС² + ВС² = 8² + 24² = 640 ВЕ= √640 = 8√10
а) В правильном треугольнике СК - высота, биссектриса и медиана.
КН/НС=1/2 (свойство).
НN║KM, CN/NM=CH/HK=1/2. (теорема Фалеса)
SM=MC => MN=(1/3)*SM.
НР/PS=NM/MS=1/3 (теорема Фалеса).
Что и требовалось доказать.
б) Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Опустим перпендикуляр МТ на плоскость АВС. Основание этого перпендикуляра окажется на прямой СК, так как плоскость КSC перпендикулярна плоскости АВС.
В нашем случае искомый угол - это угол МКС, так как КТ - проекция прямой МК на плоскость АВС.
Высота СК правильного треугольника АВС (формула):
СК=(√3/2)*а = 3√3 (при стороне АВ=6).
КН=(1/3)*СК = √3.
SK=4 (так как треугольник ASK - пифагоров: АК=3, SA=5).
SH=√(SK²-KH²) = √(16-3) =√13.
PH=(1/4)*SH =√13/4 (доказано в пункте а).
tgα=PH/KH=√13/(4√3) = √39/12.
α= arctg(√39/12) ≈ 27,5°
АВ=30.
Проведём биссектрису ВЕ.
Биссектриса делит сторону на части пропорциональные прилежашим сторонам, пусть Е точка пересечения биссектрисы и противолежащей стороны, меньший угол в треугольнике лежит напротив меньшей стороны. Меньшая сторона АС=18 см. Пусть АЕ=х, тогда ЕС= 18 -х. Составим пропорцию : АЕ/ЕС= 30/24
х/18-х = 5/4
Решим это уравнение, получим х=10, поэтому АЕ=10, ЕС=8 см.
Рассмотрим треугольник ВЕС, <C = 90, по теореме Пифагора, получим,
ВЕ² = ЕС² + ВС² = 8² + 24² = 640
ВЕ= √640 = 8√10