Питання №1 ? Укажіть усі трикутники, зображені на рисунку, однією з вершин яких є точка А. ∆BAC, ∆ACE, ∆DAC, ∆DAВ ∆BAC, ∆ACE, ∆DAE ∆BAC, ∆ACE ∆BAC, ∆BAD
Один внутренний и и один внешний угол многоугольника, взятые при одной вершине, составляют развернутый угол. ⇒ Их сумма равна 180°. Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы. Если внешний угол принять равным х, то внутренний будет х+100°⇒ х+х+100°=180° 2х=80° х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
Один внутренний и и один внешний угол многоугольника, взятые при одной вершине, составляют развернутый угол. ⇒ Их сумма равна 180°. Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы. Если внешний угол принять равным х, то внутренний будет х+100°⇒ х+х+100°=180° 2х=80° х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы.
Если внешний угол принять равным х, то внутренний будет х+100°⇒
х+х+100°=180°
2х=80°
х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.
Все внутренние углы правильного многоугольника равны. ⇒ равны и его внешние углы.
Если внешний угол принять равным х, то внутренний будет х+100°⇒
х+х+100°=180°
2х=80°
х=40°- величина внешнего угла данного правильного многоугольника.
Сумма внешних углов многоугольника, взятых по одному при каждой его вершине, равна 360°. ⇒
360°:40°=9 – количество сторон данного многоугольника.