Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Высота равностороннего треугольника равна 25√3. Найдите его периметр.
Решение:
1) Так как треугольник равносторонний, то ∠A = ∠B = ∠C = 180° : 3 = 60°.
2) Рассмотрим треугольник ABH (∠H = 90)
∠B = 180° - 90° - 60° = 30°
3) AH = половине AB = AB/2 - Катет, лежащий против угла в 30°.
AB2 = (25√3)2 + (AB/2)2
AB2 = 1875 + AB2/4
AB2 - AB2/4= 1875
(3AB2)/4 = 1875
Крест-накрест:
3AB2 = 4 * 1875
3AB2 = 7500
AB2 = 7500 / 3
AB2 = 2500
AB = √2500
AB = 50
4) Периметр равен сумме всех сторон, так как треугольник имеет 3 стороны и в данном случа они все равны, то:
P = 50 + 50 + 50 = 150
ответ: 150