Площі двох подібних многокутників відносяться як 25:4. Одна зі сторін першого многокутника дорівнює 15 см. Знайдіть відповідну їй сторону другого многокутника.
Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка.
Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка.
Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр.
Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
Нехай дано ∆ АВС рівнобедрений, АС — основа.
Вписане коло, т. D, E, F — точки дотику. AF = 5 см, BD = 6см
Знайдемо P∆ АВС
OF - радіус вписаного кола, тоді OF _|_ AC.
BF _|_ AC — висота, проведена до основи рівнобедреного ∆ АВС, тоді BF– медіана, AF = FC = 5 см. AC = AF + FC; AC = 5 + 5 = 10 см.
AF = AD = 5 см (як відрізки дотичних, проведених з т. А до кола).
BD = DF = 6 см; СF = CE = 5 см (як відрізки дотичних, проведених
з точок В і С до кола). AB = AD + DB; AB = 5 + 6 = 11 см. AB = ВС = 11 см (∆АВС - рівнобедрений). Р∆авс - АВ + BC + AC;
P∆ABC = 11 + 11 + 10 = 32 см
Відповідь: Р∆ABC 32 см.
все переписуй:)