Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
1) квадрат; 2) прямоугольник; 3) параллелограмм; 4) равнобочная трапеция
Объяснение:
Находим длины сторон четырёхугольника по формуле
1) A(-2; 0), B(0; -2), C(2; 0), D(0; 2)
Четырёхугольник, у которого все стороны равны, является ромбом.
Найдём длины диагоналей ромба
Ромб, диагонали которого равны, является квадратом.
АВСD - квадрат
2) A(-2; 1), B(2; -1), C(3; 1), D(-1; 3)
Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.
Найдём длины диагоналей параллелограмма
Параллелограмм, диагонали которого равны, является прямоугольником.
АВСD - прямоугольник
3) A(-2; 1), B(2; 2), C(1; 4), D(-3; 3)
Четырёхугольник, у которого противоположные стороны попарно равны, является параллелограммом.
Найдём длины диагоналей параллелограмма
Диагонали параллелограмма имеют различную длину.
АВСD - параллелограмм
4) A(-2; -1), B(2; -1), C(1; 2), D(-1; 2)
Уравнение прямой, содержащей сторону АВ у = -1, а уравнение прямой, содержащей сторону CD, у = 2. Следовательно АВ║ СD.
Запишем уравнение прямой, содержащей сторону ВС:
3x - 6 = -y - 1
y = -3x + 5
Запишем уравнение прямой, содержащей сторону AD:
3x + 6 = y + 1
y = 3x + 5
Очевидно, что ВС ∦ AD
Четырёхугольник, у которого две противоположные стороны параллельны, а две другие не параллельны, является трапецией.
Видим, что боковые стороны трапеции ВC = AD
АВСD - равнобочная трапеция