По условию Δ равнобедренный. две его стороны обозначим а, угол между ними =180°-30° *2=120° SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2) 64√3=(1/4)a²√3, a²=256, a=16 основание Δ обозначим с. рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания. cos 30°=(c/2)/a √3/2=(c/2)/16, √3/2=c/32, c=16√3 ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2. пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы) по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3 SΔ=(1/2)*c*h 64√3=(1/2)*2x√3*x 64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см ответ: 16,16 и 16√3
Гипотенуза треугольника лежащего в основании равна 10, по т пифагора Корень из 64+36 сумаа квадратов катетов равна квадрату гипотенузы ну 10 короче. Дальше найдем площадь оснований и сложим их. Площадь основани это площадь треугольника лежащего в основании 1/2*6*8=24 и тк у нас два основания умножаем на 2 т.е 48см^2/
Дальше найдем высоту. Высота тут будет вертикальное ребро тк призма прямая то все три ребра расположены к основанию под углом 90 градусов. Обозначим высоту за х. и теперь мы должны найти сумму площадей трех граней. Тк мы уже нашли площади оснований вычитаем их сумму из площади полной поверхности 288-48=240. теперь запишем сумму площадей граней 6х+8х+10х=240 24х=40 х=10см высота равна 10см.
SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2)
64√3=(1/4)a²√3, a²=256, a=16
основание Δ обозначим с.
рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания.
cos 30°=(c/2)/a
√3/2=(c/2)/16, √3/2=c/32, c=16√3
ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2.
пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы)
по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3
SΔ=(1/2)*c*h
64√3=(1/2)*2x√3*x
64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см
ответ: 16,16 и 16√3
Гипотенуза треугольника лежащего в основании равна 10, по т пифагора Корень из 64+36 сумаа квадратов катетов равна квадрату гипотенузы ну 10 короче. Дальше найдем площадь оснований и сложим их. Площадь основани это площадь треугольника лежащего в основании 1/2*6*8=24 и тк у нас два основания умножаем на 2 т.е 48см^2/
Дальше найдем высоту. Высота тут будет вертикальное ребро тк призма прямая то все три ребра расположены к основанию под углом 90 градусов. Обозначим высоту за х. и теперь мы должны найти сумму площадей трех граней. Тк мы уже нашли площади оснований вычитаем их сумму из площади полной поверхности 288-48=240. теперь запишем сумму площадей граней 6х+8х+10х=240 24х=40 х=10см высота равна 10см.