В прямоугольной трапеции диагональ=биссектриса острого угла и делит высоту на два отрезка.
Пусть в трапеции АВСD ВС меньшее основание, АD - большее, сторона АВ - перпендикулярна основаниям.
Диагональ ВD - биссектриса угла СDА.
СН - высота из С к АD.
Точка М - пересечение диагонали и высоты трапеции.
Рассмотрим треугольник СНD.
В этом треугольнике биссектриса угла СDН делит противоположную сторону СН на отрезки 15 и 9.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Следовательно, СD:DН=СМ:МН=15:9 или 5:3, если сократить на 3 Пусть коэффициент отношения сторон ВD и НD будет х. Тогда СD=5х, DН=3х, и по т.Пифагора СD²-НD²=СН² 25х²-9х²=576 16х²=576 х²=36 х=6 см СD=5х=30 см НD=3х=18 см В треугольнике ВСD углы СDВ и СВD равны, так как углы ВDА и СВD трапеции равны как накрестлежащие, а ∠СDВ=∠ВDА по условию. Так как углы при основании ВD треугольника ВСD равны,
треугольник ВСD - равнобедренный и ВС=СD. АН=ВС как сторона прямоугольника АВСН. АD=АН+НD=30+18=48 см Р=АВ+ВС+СD+АD=24+30+30+48=132 см
Поскольку высоты равны,то этот треугольник равнобедренный=> C1AC=A1CA
Возьмем треугольники АСС1 и AA1C,докажем,что они равны: 1) AA1=C1C
2)AC общий
3)угол AC1C=AA1C
Поскольку высоты равны,то этот треугольник равнобедренный=> C1AC=A1CA
От первого признака равенства треугольников получаем,что эти треугольники равны:
если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
BA1=A1C=> AA1 является медианой треугольника,АА1=C1C=> C1C тоже является медианой. Если у треугольника и медианы,и высоты совподают,то этот треугольник является равносторонным.=>ответ /_B=60°
В прямоугольной трапеции диагональ=биссектриса острого угла и делит высоту на два отрезка.
Пусть в трапеции АВСD ВС меньшее основание, АD - большее, сторона АВ - перпендикулярна основаниям.
Диагональ ВD - биссектриса угла СDА.
СН - высота из С к АD.
Точка М - пересечение диагонали и высоты трапеции.
Рассмотрим треугольник СНD.
В этом треугольнике биссектриса угла СDН делит противоположную сторону СН на отрезки 15 и 9.
Биссектриса внутреннего угла треугольника делит противоположную сторону
в отношении, равном отношению двух прилежащих сторон.
Следовательно, СD:DН=СМ:МН=15:9 или 5:3, если сократить на 3
Пусть коэффициент отношения сторон ВD и НD будет х.
Тогда СD=5х, DН=3х, и по т.Пифагора
СD²-НD²=СН²
25х²-9х²=576
16х²=576
х²=36
х=6 см
СD=5х=30 см
НD=3х=18 см
В треугольнике ВСD углы СDВ и СВD равны, так как углы ВDА и СВD трапеции равны как накрестлежащие, а ∠СDВ=∠ВDА по условию.
Так как углы при основании ВD треугольника ВСD равны,
треугольник ВСD - равнобедренный и ВС=СD.
АН=ВС как сторона прямоугольника АВСН.
АD=АН+НD=30+18=48 см
Р=АВ+ВС+СD+АD=24+30+30+48=132 см
Поскольку высоты равны,то этот треугольник равнобедренный=> C1AC=A1CA
Возьмем треугольники АСС1 и AA1C,докажем,что они равны:
1) AA1=C1C
2)AC общий
3)угол AC1C=AA1C
Поскольку высоты равны,то этот треугольник равнобедренный=> C1AC=A1CA
От первого признака равенства треугольников получаем,что эти треугольники равны:
если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
BA1=A1C=> AA1 является медианой треугольника,АА1=C1C=> C1C тоже является медианой.
Если у треугольника и медианы,и высоты совподают,то этот треугольник является равносторонным.=>ответ /_B=60°