1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
1.1) Если угол между боковым ребром и основанием 60гр., то между этим ребром и высотой - 30 гр. Поэтому высота равна h=6*cos(30) = 3корень3.
2) Площадь правильного тр-ка со строной 4 равна S = 4^2*корень3/4=4корень3.
3) V=h*S=36 см^3
ответ:36см^3
2.
72 см²
V = Sосн · h
Основание - прямоугольник со сторонами a = 4 см и b = 6 см,
Sосн = ab = 4 · 6 = 24 см²
h = 3 см
V = 24 · 3 = 72 см³
или
Так как все грани призмы прямоугольники, то это прямоугольный параллелепипед, объем которого равен произведению трех его измерений:
V = 4 · 6 · 3 = 72 см³
3.
V=48√3см³
Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат поэтому все стороны основания равны. Обозначим вершины пирамиды АВСД с высотой КО и проведём две диагонали АС и ВД, которые делят основание на 4 равных равнобедренных прямоугольных треугольника в которых половины диагоналей являются катетами а сторона основания гипотенузой. Рассмотрим полученный ∆СОД. В нём проэкция апофемы ОМ на основание также является медианой, поскольку боковая грань пирамиды равнобедренная, поэтому медиана равна половине гипотенузы СД. ОМ=12/2=6см.
Рассмотрим ∆КМО. Он прямоугольный где КО и ОМ - катеты, а КМ- гипотенуза.
КО лежит напротив угла 30°, поэтому равен половине гипотенузы КМ. Пусть КО=х, тогда КМ=2х. Составим уравнение используя теорему Пифагора:
КМ²-КО²=ОМ²
(2х)²-х²=3²
4х²-х²=9
3х²=9
х²=9/3=3
х=√3; КО=√3см, тогда КМ=2√3см
Sосн=12²=144см²
Теперь найдём объем пирамиды зная её высоту и площадь основания по формуле:
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам
1.1) Если угол между боковым ребром и основанием 60гр., то между этим ребром и высотой - 30 гр. Поэтому высота равна h=6*cos(30) = 3корень3.
2) Площадь правильного тр-ка со строной 4 равна S = 4^2*корень3/4=4корень3.
3) V=h*S=36 см^3
ответ:36см^3
2.
72 см²
V = Sосн · h
Основание - прямоугольник со сторонами a = 4 см и b = 6 см,
Sосн = ab = 4 · 6 = 24 см²
h = 3 см
V = 24 · 3 = 72 см³
или
Так как все грани призмы прямоугольники, то это прямоугольный параллелепипед, объем которого равен произведению трех его измерений:
V = 4 · 6 · 3 = 72 см³
3.
V=48√3см³
Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат поэтому все стороны основания равны. Обозначим вершины пирамиды АВСД с высотой КО и проведём две диагонали АС и ВД, которые делят основание на 4 равных равнобедренных прямоугольных треугольника в которых половины диагоналей являются катетами а сторона основания гипотенузой. Рассмотрим полученный ∆СОД. В нём проэкция апофемы ОМ на основание также является медианой, поскольку боковая грань пирамиды равнобедренная, поэтому медиана равна половине гипотенузы СД. ОМ=12/2=6см.
Рассмотрим ∆КМО. Он прямоугольный где КО и ОМ - катеты, а КМ- гипотенуза.
КО лежит напротив угла 30°, поэтому равен половине гипотенузы КМ. Пусть КО=х, тогда КМ=2х. Составим уравнение используя теорему Пифагора:
КМ²-КО²=ОМ²
(2х)²-х²=3²
4х²-х²=9
3х²=9
х²=9/3=3
х=√3; КО=√3см, тогда КМ=2√3см
Sосн=12²=144см²
Теперь найдём объем пирамиды зная её высоту и площадь основания по формуле:
V=⅓×Sосн×KO=⅓×144×√3=48√3см³
4.V = 7√3 см³
Объяснение: