Площа основи прямокутника паралелепіпеда 972 см а основний розмір, довжина сторони бази 27 см, 9/25становить діагоналі. обчисліть площу загальної площі та об’єму паралелепіпеда.
Мета: домогтися засвоєння учнями змісту понять: плоский кут (у неявному вигляді), центральний кут, дуга кола, що відповідає даному центральному куту, градусна міра дуги кола, вписаний кут, — а також засвоєння учнями змісту властивості вписаного кута (про вимірювання вписаного кута).
Формувати вміння:
· відтворювати зміст вивчених тверджень;
· знаходити на готовому рисунку вивчені поняття;
· виконувати правильні зображення вивчених понять заданим описом;
· розв'язувати задачі із використанням вивчених тверджень на обчислення градусної міри вписаних та центральних кутів.
Тип уроку: застосування знань, умінь та навичок.
Наочність та обладнання: схема.
Хід уроку
I. Організаційний момент
II. Перевірка домашнього завдання
Перевірка правильності виконання письмової частини домашнього завдання відбувається під час перевірки зошитів із виконаною домашньою самостійною роботою. На уроці для зворотного зв'язку вчитель лише оголошує правильні відповіді (за необхідності видає учням правильні розв'язання для виконання роботи над помилками вдома).
ІІІ. Формулювання мети і завдань уроку
Для розуміння логіки вивчення матеріалу (як це правильно зауважують автори підручника) можна звернутись до схеми логічної побудови курсу геометрії 7 класу, а потім скласти відповідну схему для відображення логіки вивчення матеріалу у 8 класі. Результат може мати такий вигляд (див. схему).
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
Объяснение:
Мета: домогтися засвоєння учнями змісту понять: плоский кут (у неявному вигляді), центральний кут, дуга кола, що відповідає даному центральному куту, градусна міра дуги кола, вписаний кут, — а також засвоєння учнями змісту властивості вписаного кута (про вимірювання вписаного кута).
Формувати вміння:
· відтворювати зміст вивчених тверджень;
· знаходити на готовому рисунку вивчені поняття;
· виконувати правильні зображення вивчених понять заданим описом;
· розв'язувати задачі із використанням вивчених тверджень на обчислення градусної міри вписаних та центральних кутів.
Тип уроку: застосування знань, умінь та навичок.
Наочність та обладнання: схема.
Хід уроку
I. Організаційний момент
II. Перевірка домашнього завдання
Перевірка правильності виконання письмової частини домашнього завдання відбувається під час перевірки зошитів із виконаною домашньою самостійною роботою. На уроці для зворотного зв'язку вчитель лише оголошує правильні відповіді (за необхідності видає учням правильні розв'язання для виконання роботи над помилками вдома).
ІІІ. Формулювання мети і завдань уроку
Для розуміння логіки вивчення матеріалу (як це правильно зауважують автори підручника) можна звернутись до схеми логічної побудови курсу геометрії 7 класу, а потім скласти відповідну схему для відображення логіки вивчення матеріалу у 8 класі. Результат може мати такий вигляд (див. схему).
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.