Обозначим пересечение BM и АС как точку О. Так как углы АОМ и ВОЕ - вертикальные, они равны.
Следовательно, в треугольнике ВОЕ углы при основании равны, делаем вывод, что он равнобедренный, из чего следует, что ВЕ = ВО = 5.
Далее, собственно, для нахождения длины медианы ВМ, нам остается найти длину отрезка ОМ и прибавить её значение к 5.
Теперь, как показано на рисунке, проведем через точку М прямую, параллельную АЕ. Теперь по теореме Фалеса получается, что, так как наша новая прямая делит и параллельная ей прямая АЕ делят сторону угла С (то есть АС), на равные отрезки, то и вторую его сторону (то есть ВС), они тоже будут делить на равные отрезки, следовательно,
ЕN = CN = 4/2 = 2.
Далее, так как углы ВОЕ и ВМN, а также углы BEO и BNM попарно соответственные, все они равны. А углы МОЕ и СЕО являются смежными с равными углами, следовательно, и они равны. Таким образом у нас получается равнобедренная трапеция МОЕN, в которой боковые стороны ОМ и EN равны.
Таким образом, ОМ = 2, а искомая сторона ВМ = 5 +2 = 7.
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
5+2 = 7
Объяснение:
Задача на теорему Фалеса.
Обозначим пересечение BM и АС как точку О. Так как углы АОМ и ВОЕ - вертикальные, они равны.
Следовательно, в треугольнике ВОЕ углы при основании равны, делаем вывод, что он равнобедренный, из чего следует, что ВЕ = ВО = 5.
Далее, собственно, для нахождения длины медианы ВМ, нам остается найти длину отрезка ОМ и прибавить её значение к 5.
Теперь, как показано на рисунке, проведем через точку М прямую, параллельную АЕ. Теперь по теореме Фалеса получается, что, так как наша новая прямая делит и параллельная ей прямая АЕ делят сторону угла С (то есть АС), на равные отрезки, то и вторую его сторону (то есть ВС), они тоже будут делить на равные отрезки, следовательно,
ЕN = CN = 4/2 = 2.
Далее, так как углы ВОЕ и ВМN, а также углы BEO и BNM попарно соответственные, все они равны. А углы МОЕ и СЕО являются смежными с равными углами, следовательно, и они равны. Таким образом у нас получается равнобедренная трапеция МОЕN, в которой боковые стороны ОМ и EN равны.
Таким образом, ОМ = 2, а искомая сторона ВМ = 5 +2 = 7.