Площа і периметр ромба дорівнюють відповідно 24 см2 і 24 см. Знайдіть висоту ромба.
2. Діагоналі ромба дорівнюють 16 см і 30 см. Знайдіть площу чотирикутника, вершинами якого є середини сторін даного ромба.
3. На діагоналі квадрата як на стороні побудовано інший квадрат. Доведіть, то його площа вдвічі більша за площу даного квадрата.
4. Сторони паралелограма дорівнюють 12 см і 16 см, а одна з висот – 15 см. Знайдіть площу паралелограма.
5. Площа прямокутника зі сторонами 6 см і 10 см дорівнює площі ромба з периметром 48 см. Знайдіть висоту ромба.
6. Сторони паралелограма дорівнюють 6 см і 9 см, а кут між ними 135°. Знайдіть площу паралелограма.
7. З вершини прямокутника до діагоналі проведено перпендикуляр завдовжки 8 см. Основа перпендикуляра ділить діагональ у відношенні 1 : 4. Знайдіть площу прямокутника.
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)