Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
1. Берілген нүктелер арқылы өтетін түзудің теңдеуін жазыңыз: А(2;1) В(-1;2). [2 ұпай]
2. Шеңбердің берілген теңдеуі бойынша оның центрінің координаталары мен радиусын табыңыз: (х-4)2 +(у+8)2 =36 [1 ұпай]
3. нүктелері берілген.
a) төбелерінің координаталары бойынша салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [3 ұпай]
c) түрін анықтаңыз (теңқабырғалы, теңбүйірлі, тікбұрышты); [2 ұпай]
d) берілген үшбұрыштың ауданын есептеңіз. [2 ұпай]
4. Төбелері А (1;-1) В (0;1) С (4;3) және Д (5;1) нүктелері болатын төртбұрыштың тіктөртбұрыш болатынын дәлелдеп, оның ауданын табыңыз. Ол үшін:
a) төбелерінің координаталары бойынша сызбасын салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [4 ұпай]
c) диагональдарын анықтап, дәлелдеңіз; [2 ұпай]
d) тіктөртбұрыштың ауданын есептеңіз. [2 ұпай]
памагит
Следовательно, √3*R²/4=D/6 => R²=2D√3/9.
R=√(2D√3)/3
По Пифагору квадрат диагонали вписанного квадрата равен
(2R)²=2а², где а - сторона квадрата.
а=2R/√2 = R√2, а площадь - S= а² =2R² .
Подставим найденное значение R, тогда
сторона вписанного квадрата:
а=√(2D√3/9)*√2=√(4D√3)/3.
площадь вписанного квадрата:
S=a²= 4D√3/9.