Сумма углов тре-ка равна 180° ⇒
180°-(64°+58°) = 58° значит тре-к равнобедренный, т.к. два угла у него равны, а основанием яв-ся ML
Высота - это перпендикуляр ⇒ ΔMPK и ΔMPL прямоугольные
Углы находим из суммы угло тр-ка
ΔMPK: ∠KMP = 180°-(90°+64°)=26°
ΔMPL: ∠LMP = 180°-(90°+58°) = 32°
△DOG= △HOF равны по 1 признаку равенства тр-ков , т.к. у них
∠DOG = ∠HOF , как вертикальные, а стороны DO=OF и GO=OH по условию, т.к. О - середина
Т.к. ∠DOG вертикален с ∠HOF , то ⇒ ∠HOF = ∠DOG = 112°
ΔHOF : сумма углов Δ =180° ⇒ ∠OFH = 180°-(112°+24°) = 44°
∠OFH накрест лежащий с ∠ODG ⇒ ∠ODG=∠OFH=44°
Объяснение:
АВ хорда окружности с центром в точке О. Найдите угол АОВ, если угол АВО = 25°.
- - -
Окружность.
Точка О - центр данной окружности.
Отрезок АВ - хорда окружности.
∠АВО = 25°.
∠АОВ = ?
Рассмотрим ΔАВО.
Отрезки АО = ВО (так радиусы одной окружности), следовательно, ΔАВО - равнобедренный (по определению).
Основание ΔАВО - отрезок АВ (так как АО и ВО - боковые стороны).
Тогда -
∠АВО = ∠ОАВ = 25°.
То есть -
∠АВО + ∠ОАВ + ∠АОВ = 180°
∠АОВ = 180° - ∠АВО - ∠ОАВ
∠АОВ = 180° - 25° - 25°
∠АОВ = 130°.
130°.
Сумма углов тре-ка равна 180° ⇒
180°-(64°+58°) = 58° значит тре-к равнобедренный, т.к. два угла у него равны, а основанием яв-ся ML
Высота - это перпендикуляр ⇒ ΔMPK и ΔMPL прямоугольные
Углы находим из суммы угло тр-ка
ΔMPK: ∠KMP = 180°-(90°+64°)=26°
ΔMPL: ∠LMP = 180°-(90°+58°) = 32°
△DOG= △HOF равны по 1 признаку равенства тр-ков , т.к. у них
∠DOG = ∠HOF , как вертикальные, а стороны DO=OF и GO=OH по условию, т.к. О - середина
Т.к. ∠DOG вертикален с ∠HOF , то ⇒ ∠HOF = ∠DOG = 112°
ΔHOF : сумма углов Δ =180° ⇒ ∠OFH = 180°-(112°+24°) = 44°
∠OFH накрест лежащий с ∠ODG ⇒ ∠ODG=∠OFH=44°
Объяснение:
АВ хорда окружности с центром в точке О. Найдите угол АОВ, если угол АВО = 25°.
- - -
Дано :Окружность.
Точка О - центр данной окружности.
Отрезок АВ - хорда окружности.
∠АВО = 25°.
Найти :∠АОВ = ?
Решение :Рассмотрим ΔАВО.
Отрезки АО = ВО (так радиусы одной окружности), следовательно, ΔАВО - равнобедренный (по определению).
У равнобедренного треугольника углы у основания равны.Основание ΔАВО - отрезок АВ (так как АО и ВО - боковые стороны).
Тогда -
∠АВО = ∠ОАВ = 25°.
Сумма внутренних углов треугольника равна 180°.То есть -
∠АВО + ∠ОАВ + ∠АОВ = 180°
∠АОВ = 180° - ∠АВО - ∠ОАВ
∠АОВ = 180° - 25° - 25°
∠АОВ = 130°.
ответ :130°.