если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямых
теорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
1) тк в осевом сечении конуса у нас лежит равнобедренный треугольник и угол при вершине 90 градусов то значит что это прямоугольный треугольник с двумя равными катетами (образующими) по 4 дм значит гипотенуза , которая равна двум радиусам , будет равна по теореме пифагора 4 корень из 2; а равна она двум радиусам потому что высота проведённая из вершины прямого угла треугольника на основание конуса равна медиане и попадает она в центр окружности основания, получается что радиус равен 2 корень из 2; 2) площадь боковой равна пи*радиус*образующую=пи*2 корень из 2*4=8 корень из двух *пи; 3) объём равен площади основания на высоту; площадь основания пи*радиус в квадрате а высота из осевого сечения по теореме пифагора можно найти: корень из( 16 - 8)= корень из 8 = два корень из двух ; объём равен пи*8*8=64*пи извини что без рисунка возможно здесь даже есть ошибки я так представил
теорема 1. признак параллельности прямых
если внутренние накрест лежащие углы равны, то прямые параллельны.
если соответственные углы равны, то прямые параллельны.если сумма внутренних односторонних углов равна 180, то прямые параллельны.следствие: две прямые, перпендикулярные третьей, параллельны. свойства параллельных прямыхтеорема 2. две прямые, параллельные третьей, параллельны.
это свойство называется транзитивностью параллельности прямых.
теорема 3. через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
теорема 4. если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.
на основании этой теоремы легко обосновываются следующие свойства.
если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны.если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180. следствие если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.