Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
Для удобства обозначим ад - а, сд - в, дд1 - с. Фотки вставлять не умею поэтому объясню так: Точки АВСД внизу, точки А1В1С1Д1 вверху над ними) рассмотрим плоскость АА1ДД1. Здесь треугольник АДД1 - прямоугольный. Тогда по теореме Пифагора а^2 + с^2 = АД^2. перейдем к плоскости СДД1С1. Здесь треугольник ДСС1 прямоугольный. По т. Пифагора: в^2 + с^2 = ДС1^2 (противоположные стороны равны, поэтому ДД1=СС1=с). Перейдем к плоскости АВСД. Здесь треугольник АСД прямоугольный. Тогда по той же любимой теореме Пифагора: а^2 + в^2 = ДВ^2. Объединим три полученных уравнения в систему и подставим известное: а^2 + с^2 = 64; в^2 + с^2 = 100; а^2 + в^2 = 144. Теперь выразим а^2 из первого, в^2 из второго и подставим в третье. а^2 = 64-с^2; в^2=100-с^2; 64 - с^2 + 100 - с^2 = 144, решаем последнее уравнение. 2с^2=20 , с = корень из 10, тогда в^2 = 100 - 10, в= корень из 90 = 3 корня из 10. а^2=64-10, а=корень из 54= 3 корня из 6
трапецию можно вписать окружность;
MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O).
M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции .
По условию задачи трапеция описана окружности , следовательно :
AD+BC =(AB +CD) = P/2 =20/2 =10.
AB =CD =5 ;
S =(AB +BC) /2 *H ;
20 =5*H ⇒ H =4.
Проведем BE ⊥AD и CF ⊥ AD,
AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 .
AD -BC =2*3 =6.
{ AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2.
ΔAOD подобен ΔCOB :
BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) .
2/8 =ON/ (4 -ON) ⇒ON =0,8.
ответ: 0,8.