Дано: окружность О; OB = R = 5 см АС - хорда OB ⊥ AC BD = 2 см Найти АС Решение ОВ = 5 см как радиус окружности 1) Найдём OD OD = OD - BD = 5см - 2 см = 3 см OD = 3 см 2) ΔODC - прямоугольный, т.к. по условию OB ⊥ AC, поэтомуможно применить теорему Пифагора. OD² + DC² = OC² DC² = OC² - OD² DC² = 5² - 3² = 25 - 9 = 16 DC = √16 = 4 см DC = 4 см 3)ΔADO = ΔODC ∠ADO = ∠ODC = 90° OA = OC = R = 5 см OD - общая Из равенства треугольников ΔADO = ΔODC следует равенство DC = AD = 4 см А теперь находим АС АС = 2*4см = 8 см ответ: 8 см
a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)
OB = R = 5 см
АС - хорда
OB ⊥ AC
BD = 2 см
Найти АС
Решение
ОВ = 5 см как радиус окружности
1) Найдём OD
OD = OD - BD = 5см - 2 см = 3 см
OD = 3 см
2) ΔODC - прямоугольный, т.к. по условию OB ⊥ AC, поэтомуможно применить теорему Пифагора.
OD² + DC² = OC²
DC² = OC² - OD²
DC² = 5² - 3² = 25 - 9 = 16
DC = √16 = 4 см
DC = 4 см
3)ΔADO = ΔODC
∠ADO = ∠ODC = 90°
OA = OC = R = 5 см
OD - общая
Из равенства треугольников ΔADO = ΔODC следует равенство
DC = AD = 4 см
А теперь находим АС
АС = 2*4см = 8 см
ответ: 8 см