площа трикутника дорівнює: а ) половині добутку його сторони на висоту , проведину до цієї сторони ; б)добуту його сторони на висоту , проведену до цієї сторони ; в) добутку всіх його сторін ; г) добутку двох його сторон
Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано). а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей. б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору: bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору: bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5. Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5. ответ: тангенс искомого угла равен 0,5.
Составь уравнение(х-угол при основании,второй х-другой,равный ему угол при основаниих+24-это угол,лежащие против основания).Имеем уравнение:х+х+х+24=180;3х+24=180;х=52.Значит,угол ,лежащий против основания,равен 52+24=76 градусов. Теперь второй вариант. Здесь на 24 градуса больше угол при основании.Так же составляем уравнение(х-угол против основания,х+24-угол при основании и так же другой,равный ему угол при основании.)Имеем уравнение:х+х+24+х+24=180;3х+48=180;х=44,значит,угол против основания равен 44 градуса,а прилежащие к основанию равны по 68 градусов
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
ответ: тангенс искомого угла равен 0,5.
Теперь второй вариант.
Здесь на 24 градуса больше угол при основании.Так же составляем уравнение(х-угол против основания,х+24-угол при основании и так же другой,равный ему угол при основании.)Имеем уравнение:х+х+24+х+24=180;3х+48=180;х=44,значит,угол против основания равен 44 градуса,а прилежащие к основанию равны по 68 градусов