Крч , если нарисовать рисунок будет видно что в треугольнике ABC еще 2 треугольника прямоугольных , рассмотрим треугольник BHC, т к угол равен 30 , то лежащая на против этого угла сторона равна половине гипотенузы , в этом треугольнике гипотенуза BC = 3 корня из 3 * 2 = 6 корней из 3 , так у нас получился равнобедренный треугольник и нужно найти основание , опять вернемся к маленьким треугольничкам внутри , и найдем неизвестные катеты по ПИФАГОРУ . HB=AH( т к равнобедренный) =( 6 корень из 3)^2 - (3 корня из 3) ^2 = 81= 9 , 9+9=18 это будет искомая сторона В общем как то так , надеюсь правильно решила )
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
9+9=18 это будет искомая сторона
В общем как то так , надеюсь правильно решила )