Дана правильная треугольная пирамида. Примем ребро основания за 1. Проведём осевое сечение пирамиды через боковое ребро. Для правильной треугольной пирамиды центр основания совпадает с проекцией вершины на основание и точкой пересечения медиан основания (а также высот и биссектрис). Заданный отрезок прямой, соединяющей центр основания правильной треугольной пирамиды с серединой бокового ребра и равный стороне основания, - это медиана прямоугольного треугольника. Поэтому боковое ребро как гипотенуза в 2 раза больше этого отрезка, то есть равно 2. Проекция бокового ребра на основание равна (2/3) высоты основания или равно (2/3)*1*cos 30° = (2√3)/(3*2) = √3/3. Высота основания равна: h = a*cos30° = √3/2. Косинус угла α наклона бокового ребра к основанию равен: cos α = (√3/3)/2 = √3/6. Синус этого угла равен: sin α = √(1 - (√3/6)²) = √(1-(3/36) = √33/6. Опустим перпендикуляр из середины ребра основания на боковое ребро. Это будет высота h в равнобедренном треугольнике сечения, перпендикулярном боковому ребру. Угол между его боковыми сторонами и будет искомым углом β между смежными гранями. Высота h сечения равна произведению высоты основания на синус α. h = (√3/2)*(√33/6) = √99/12 =√11/4. Боковые стороны в треугольника перпендикулярного сечения равны: в = √((а/2)² + h²) = √((1/4) + (11/16)) = √15/4. Искомый угол β между гранями находим по теореме косинусов: cos β = (√15/4)² + (√15/4)² - 1²)/(2*(√15/4)*(√15/4)) = 14/30 = 7/15. Этому косинусу соответствует угол 1,085278 радиан или 62,18186°.
Этот же угол можно было определить через двойной угол, тангенс которого равен отношению половины стороны основания к высоте h. β = 2arc tg((1/2)/(√11/4)) = 2arc tg(2√11/11).
Дана правильная четырёхугольная пирамида SABCD, все ребра которой равны, точка M - середина SB. Найти косинус между АМ и BD.
Есть 2 метода решения этого задания: 1) геометрический, 2) векторный.
Примем 1 вариант. Длины рёбер примем за 1. Перенесём отрезок АМ точкой А в точку Д. Новую точку М соединим с вершиной основания В. Получили треугольник ДМВ. Находим длины сторон. ДВ = √2 (как диагональ квадрата). Высота пирамиды с диагональю √2 и боковыми рёбрами по 1 (это прямоугольный равнобедренный треугольник с острыми углами по 45 градусов) равна половине гипотенузы, то есть √2/2. Так как точка М на середине ребра, то она по высоте отстоит от основания на √2/4. ВМ = √((1+(1/4))²+(1/4)²+(√2/4)²) = √(25+1+2)/16) = √28/4 = √7/2. ДМ = √((3/4)²+(1/4)²+(√2/4)²) = √(9+1+2)/16) = √12/4 = √3/2. Косинус угла Д находим по теореме косинусов. cos D = ((√3/2)²+(√2)²-(√7/2)²)/(2*(√3/2)*(√2) = = ((3/4)+2-(7/4))/√6 = 1/√6 = √6/6 ≈ 0,4082483. Этому косинусу соответствует угол 1,150262 радиан или 65,905157°.
Проведём осевое сечение пирамиды через боковое ребро.
Для правильной треугольной пирамиды центр основания совпадает с проекцией вершины на основание и точкой пересечения медиан основания (а также высот и биссектрис).
Заданный отрезок прямой, соединяющей центр основания правильной треугольной пирамиды с серединой бокового ребра и равный стороне основания, - это медиана прямоугольного треугольника.
Поэтому боковое ребро как гипотенуза в 2 раза больше этого отрезка, то есть равно 2.
Проекция бокового ребра на основание равна (2/3) высоты основания или равно (2/3)*1*cos 30° = (2√3)/(3*2) = √3/3.
Высота основания равна: h = a*cos30° = √3/2.
Косинус угла α наклона бокового ребра к основанию равен:
cos α = (√3/3)/2 = √3/6.
Синус этого угла равен:
sin α = √(1 - (√3/6)²) = √(1-(3/36) = √33/6.
Опустим перпендикуляр из середины ребра основания на боковое ребро. Это будет высота h в равнобедренном треугольнике сечения, перпендикулярном боковому ребру. Угол между его боковыми сторонами и будет искомым углом β между смежными гранями.
Высота h сечения равна произведению высоты основания на синус α.
h = (√3/2)*(√33/6) = √99/12 =√11/4.
Боковые стороны в треугольника перпендикулярного сечения равны:
в = √((а/2)² + h²) = √((1/4) + (11/16)) = √15/4.
Искомый угол β между гранями находим по теореме косинусов:
cos β = (√15/4)² + (√15/4)² - 1²)/(2*(√15/4)*(√15/4)) = 14/30 = 7/15.
Этому косинусу соответствует угол 1,085278 радиан или 62,18186°.
Этот же угол можно было определить через двойной угол, тангенс которого равен отношению половины стороны основания к высоте h.
β = 2arc tg((1/2)/(√11/4)) = 2arc tg(2√11/11).
Найти косинус между АМ и BD.
Есть 2 метода решения этого задания:
1) геометрический,
2) векторный.
Примем 1 вариант. Длины рёбер примем за 1.
Перенесём отрезок АМ точкой А в точку Д.
Новую точку М соединим с вершиной основания В.
Получили треугольник ДМВ.
Находим длины сторон.
ДВ = √2 (как диагональ квадрата).
Высота пирамиды с диагональю √2 и боковыми рёбрами по 1 (это прямоугольный равнобедренный треугольник с острыми углами по 45 градусов) равна половине гипотенузы, то есть √2/2.
Так как точка М на середине ребра, то она по высоте отстоит от основания на √2/4.
ВМ = √((1+(1/4))²+(1/4)²+(√2/4)²) = √(25+1+2)/16) = √28/4 = √7/2.
ДМ = √((3/4)²+(1/4)²+(√2/4)²) = √(9+1+2)/16) = √12/4 = √3/2.
Косинус угла Д находим по теореме косинусов.
cos D = ((√3/2)²+(√2)²-(√7/2)²)/(2*(√3/2)*(√2) =
= ((3/4)+2-(7/4))/√6 = 1/√6 = √6/6 ≈ 0,4082483.
Этому косинусу соответствует угол 1,150262 радиан или 65,905157°.