Откройте файл в отдельном окошке и читайте мои аннотации: 1) Чертим и отмечаем то, что нам известно 2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB. 3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B. Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB. 4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания. 5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB. 6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем. 7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.) Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный. По теореме Пифагора находим их. 8) Записываем ответ.
2. Углы в 65° равны как накрест лежащие, следовательно AB || CD, следовательно угол а равен 85° как соответственный.
3. <BAC + <AMK = 180°, а они односторонние углы, следовательно MK || AC, следовательно <MKB = <ACB, следовательно <MKB - <ACB = 0.
4. Пусть x - коэффициент пропорциональности, следовательно углы будут 2x и 7x.
Сумма односторонних углов при параллельных прямых равна 180°, следовательно составляем уравнение.
2x + 7x = 180
9x = 180
x = 20
Меньший угол будет равен 2 × 20 = 40°.
5. (см. рисунок)
<CBM = <BMA как накрест лежащие (т. к. BC || AD по условию).
<ABM = <BMA, следовательно треугольник ABM - равнобедренный.
1) Чертим и отмечаем то, что нам известно
2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB.
3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B.
Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB.
4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания.
5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB.
6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем.
7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.)
Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный.
По теореме Пифагора находим их.
8) Записываем ответ.
Надеюсь, что доступно и понятно.