Площадь боковой поверхности правильной шестиугольной призмы равна Q. Найдите площадь сечения призмы плоскостью перпендикулярной большей диагонали основания и делит ее пополам. С объяснением желательно
На самом деле задана не просто точка, а ДВА отрезка, на которые биссектриса делит (заданную) сторону.
Вот как можно строить. Где-то на плоскости строим угол, равный заданному. От его вершины откладываем вдоль одного луча один из отрезков, на которые биссектриса делит (заданную) сторону, а вдоль другого - другой (откладываем от вершины, конечно).
Концы отрезков соединяем (вдоль этой прямой будет располагаться противоположная строна).
Получился треугольник, подобный искомому.
Если построить биссектрису угла, она разделит противоположную (только что построенную) сторону в нужной пропорции.
Фиксируем точку пересечения (точку, где биссектриса пересекается с построенной прямой) и от неё в разные стороны вдоль построенной прямой откладываем опять те же отрезки (не перепутать куда какой - скажем, меньший в сторону где меньший и наоборот).
Теперь осталось из полученных точек (концов отрезков) провести прямые, параллельные сторонам заданного угла до пересечения.
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8. рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15. дальше. маленькое основание будет равно (15+6)-12=9 площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96
На самом деле задана не просто точка, а ДВА отрезка, на которые биссектриса делит (заданную) сторону.
Вот как можно строить. Где-то на плоскости строим угол, равный заданному. От его вершины откладываем вдоль одного луча один из отрезков, на которые биссектриса делит (заданную) сторону, а вдоль другого - другой (откладываем от вершины, конечно).
Концы отрезков соединяем (вдоль этой прямой будет располагаться противоположная строна).
Получился треугольник, подобный искомому.
Если построить биссектрису угла, она разделит противоположную (только что построенную) сторону в нужной пропорции.
Фиксируем точку пересечения (точку, где биссектриса пересекается с построенной прямой) и от неё в разные стороны вдоль построенной прямой откладываем опять те же отрезки (не перепутать куда какой - скажем, меньший в сторону где меньший и наоборот).
Теперь осталось из полученных точек (концов отрезков) провести прямые, параллельные сторонам заданного угла до пересечения.
Построение закончено.
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8.
рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15.
дальше. маленькое основание будет равно (15+6)-12=9
площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96