Площадь каких треугольников можно вычислить по формуле: a^2√3/3 ? Прямоугольных треугольников Равнобедренных треугольников Произвольных треугольников Не подходит ни для одного треугольника
Королевский пингвин, житель Антарктиды. Похож на императорского пингвина, но немного мельче его размерами и ярче окраской. Длина тела королевского пингвина составляет от 91 см до 1 м. Взрослые птицы имеют серую спину, по бокам чёрной головы и на груди крупные яркие оранжевые пятна. Брюхо белое. Птенцы бурого цвета. Живут королевские пингвины большими шумными колониями, насчитывающими несколько десятков тысяч пар. Колонии располагаются на больших, покрытых редкой растительностью равнинах. Социальной иерархии в них как таковой нет, но за места в центре колонии птицы конкурируют.
Треугольник в основании пирамиды - прямоугольный. Это следует из соотношения квадратов его сторон по Пифагору: 6² + 8² = 36 + 64 = 100, 10² = 100. Если все боковые рёбра равны, то ось пирамиды вертикальна и проходит через середину гипотенузы основания пирамиды. Это вытекает из равенства проекций боковых рёбер пирамиды на её основание. Точка в прямоугольном треугольнике, равноудалённая от его вершин, находится в середине гипотенузы. Отсюда находим высоту пирамиды: Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.
Это следует из соотношения квадратов его сторон по Пифагору:
6² + 8² = 36 + 64 = 100,
10² = 100.
Если все боковые рёбра равны, то ось пирамиды вертикальна и проходит через середину гипотенузы основания пирамиды.
Это вытекает из равенства проекций боковых рёбер пирамиды на её основание. Точка в прямоугольном треугольнике, равноудалённая от его вершин, находится в середине гипотенузы.
Отсюда находим высоту пирамиды:
Н = √(13² - (10/2)²) = √(169 - 25) = √144 = 12.