1) у прямоугольной трапеции АБСД одна сторона, которая ⊥ основаниям пусть будет обозначена через АБ и равна по условию 1х. Тогда СД = 2х.
2) давайте проведем из точки С высоту СН.
СН=АБ=1х
3) теперь рассмотрим ΔСДН - он прямоугольный. А в прямоугольном треугольнике отношение противолежащего катета СН к гипотенузе СД = синусу острого угла ∠Д. или 1х/2х=1/2
Другими словами sinα=1/2⇒ α=30 (смотрите значения по таблице углов)
4) из суммы односторонних углов равных 180° и равенста накрестлежащих углов выводим, что ∠С=180-30=150
150
Объяснение:
1) у прямоугольной трапеции АБСД одна сторона, которая ⊥ основаниям пусть будет обозначена через АБ и равна по условию 1х. Тогда СД = 2х.
2) давайте проведем из точки С высоту СН.
СН=АБ=1х
3) теперь рассмотрим ΔСДН - он прямоугольный. А в прямоугольном треугольнике отношение противолежащего катета СН к гипотенузе СД = синусу острого угла ∠Д. или 1х/2х=1/2
Другими словами sinα=1/2⇒ α=30 (смотрите значения по таблице углов)
4) из суммы односторонних углов равных 180° и равенста накрестлежащих углов выводим, что ∠С=180-30=150
Даны вершины треугольника:
А(3; -1; 6), В(1; 7; -2), С(1; -3; 2).
Находим расстояние между точками.
d = v ((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
Вектор АВ -2 8 -8 |AB| = √(4 + 64 + 64) =√132.
Вектор ВС 0 -10 4 |BC| = √(0 + 100 + 16) =√116.
Вектор АС -2 -2 -4 |AC| = √(4 + 4 + 16) =√24.
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
10,77 4,89 11,49 13,58 27,158 26,306
116 24 132 квадраты
По теореме косинусов:
cos A = 0,355334527 cos B = 0,905111457 cos С = 0,075809804
Аrad = 1,207524401 Brad = 0,439154533 Сrad = 1,494913719
Аgr = 69,18605183 Bgr = 25,16170132 Сgr = 85,65224685 .
По заданию - треугольник АВС разносторонний.