Поскольку MS - биссектриса, она делит угол М пополам, значит ∠SMK = 0,5 * ∠M = 0,5 * ∠K, т. к. углы М и К равны как углы при основании КМ равнобедренного треугольника.
Рассмотрим треугольник SMK. По условию, ∠MSK = 105°, сумма углов треугольника равна 180°, значит:
∠К + ∠SMK = 180° - ∠MSK = 180° - 105° = 75°;
∠К + 0,5 * ∠K = 1,5 * ∠K = 75°;
∠K = 75° / 1,5 = 50°.
Следовательно, углы М и К при основании КМ равны 50°.
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
Поскольку MS - биссектриса, она делит угол М пополам, значит ∠SMK = 0,5 * ∠M = 0,5 * ∠K, т. к. углы М и К равны как углы при основании КМ равнобедренного треугольника.
Рассмотрим треугольник SMK. По условию, ∠MSK = 105°, сумма углов треугольника равна 180°, значит:
∠К + ∠SMK = 180° - ∠MSK = 180° - 105° = 75°;
∠К + 0,5 * ∠K = 1,5 * ∠K = 75°;
∠K = 75° / 1,5 = 50°.
Следовательно, углы М и К при основании КМ равны 50°.
∠K = ∠М = 50°.
Угол L при вершине данного треугольника:
∠L = 180° - ∠K - ∠М = 180° - 50° - 50° = 80°.
9 м.
Объяснение:
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
По теореме Пифагора имеем равенство
ВС²=12²+х², а СК²=9²+(21-х)²
Поскольку ВС=СК, равенство принимает вид
12²+х²=9²+(21-х)²
144+х²=81+441-42х+х²
42х=378
х=9.
Расстояние от дома до зёрен 9 м.