Площадь кругового сектора равна 9π см² а радиус окружности - 6 см. Найдите длину хорды стягивающей дугу этого сектора и площадь получившегося сегмента Дескриптор
Использует формулу площади сектора круга
Вычисляет величину центрального угла соответствующего данному сектору
Указывает вид треугольника
Находит длину хорды
Вычисляет площадь сегмента
Обозначим меньший угол AMN за х, а CNM - 3x.
х+3х = 180 4х = 180 х = 18/0 / 4 = 45° - угол AMN,
3х = 3*45 = 135° - это угол CNM.
Из 8 углов они повторяются - Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы
Углы и — вертикальные. Очевидно,вертикальные углы равны, то есть
Конечно, углы и , и — тоже вертикальные.
Углы и — смежные, это мы уже знаем. Сумма смежных углов равна 180° .
Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.
,
,
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.