О- центр вписанной окружности, ихвестно, что цент вписанной в треугольник окружности лежит в точке пересечения биссектрис ( а , значит и набиссектрисе прямого угла)
СД- биссектриса, значит АД:ДВ=4х:3х
Опусти перпендикуляры из точки О на катеты - ОК на катет СВ и ОМ на катет АС они равны радиусу, те 7см.
тк угол С прямой, то ОК=МС=МО=СК=7см.
Вспомним, сто отезки касательных, проведенных из одной точки к окружности равны ( легко доказать) Т.е. КВ=ДВ=3х и АМ=АД =4х.
Получилось
АС=АМ+МС=4х+7
АВ=АД+ДВ=4х+3х=7х
СВ=СК+КВ=7+3х
Теперь составим уравнение применив теорему Пифагора
Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки длиной 3 см и 4 см. Найдите радиус окружности, вписанной в треугольник.
решение : Радиус окружности, вписанной в прямоугольный треугольник вычисляется по формуле r = ( a + b - c)/2 ,где a и b катеты , c -гипотенуза .
a / b = 3/4 (свойство биссектрисы внутреннего угла треугольника)
* * *Биссектриса угла, проведённая в треугольнике, делит противолежащую сторону на два отрезка, которые пропорциональны прилежащим к углу сторонам * * * .
a =3k ; b =4k ⇒ с =5k * * * c =√( (3k)²+(4k)² ) =5k * * *
r =(3k+4K -5k)/2 = k , но c =3 см+4 см =7 см ; 5k =7 см⇒ k =1,4 см.
Обозначим треугольник АВС, С- прямой угол,
О- центр вписанной окружности, ихвестно, что цент вписанной в треугольник окружности лежит в точке пересечения биссектрис ( а , значит и набиссектрисе прямого угла)
СД- биссектриса, значит АД:ДВ=4х:3х
Опусти перпендикуляры из точки О на катеты - ОК на катет СВ и ОМ на катет АС они равны радиусу, те 7см.
тк угол С прямой, то ОК=МС=МО=СК=7см.
Вспомним, сто отезки касательных, проведенных из одной точки к окружности равны ( легко доказать) Т.е. КВ=ДВ=3х и АМ=АД =4х.
Получилось
АС=АМ+МС=4х+7
АВ=АД+ДВ=4х+3х=7х
СВ=СК+КВ=7+3х
Теперь составим уравнение применив теорему Пифагора
(4х+7)^{2}+(7+3х)^{2)=(7х)^{2}
решив его. найдем х потом умножим на 3 и на 4
Биссектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки длиной 3 см и 4 см. Найдите радиус окружности, вписанной в треугольник.
решение : Радиус окружности, вписанной в прямоугольный треугольник вычисляется по формуле r = ( a + b - c)/2 ,где a и b катеты , c -гипотенуза .
a / b = 3/4 (свойство биссектрисы внутреннего угла треугольника)
* * *Биссектриса угла, проведённая в треугольнике, делит противолежащую сторону на два отрезка, которые пропорциональны прилежащим к углу сторонам * * * .
a =3k ; b =4k ⇒ с =5k * * * c =√( (3k)²+(4k)² ) =5k * * *
r =(3k+4K -5k)/2 = k , но c =3 см+4 см =7 см ; 5k =7 см⇒ k =1,4 см.
ответ : 1,4 см .