Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
В основании правильной 4-ной пирамиды лежит квадрат. Пусть его диагонали равны 2х, тогда из условия равновеликости имеем: 1/2*2x*2x=1/2*2x*10, значит: 2x=10 <=> x=5. Площадь основания равна 2x^2=2*25=50. Ребро основания по теореме Пифагора равно кореньиз(25+25)=5*кореньиздвух. Боковое ребро по теореме Пифагора равно кореньиз (100+25)=5*кореньизтрех. Т.к. боковая грань это равнобедр.треуг.со сторонами 5*кореньизтрех, 5*кореньизтрех, 5*кореньиздвух, то площадь найдем как полупроизведение высоты на основание. Высота грани по теореме Пифагора равна кореньиз(125-12,5)=кореньиз(112,5)=7,5*кореньиздвух. Площадь грани равна 1/2*5*кореньиздвух*7,5*кореньиздвух=37,5. Полная поверхность равна 4*37,5+50=200. ответ: 200.