Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
1) Если в треугольнике АВС даны не векторы, а координаты его вершин А(10;-2;8) В(8;0;7) С (10;2;8), то находим длины сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²)= √9 = 3, BC = √((Хc-Хв)²+(Ус-Ув)²+(Zс-Zв)²) =√9 = 3, AC = √((Хc-Хa)²+(Ус-Уa)²+(Zс-Zа)²) = √16 = 4. Периметр равен 3+3+4 = 10.
3. Если даны координаты точек: А(2;4;5) В(-3;2;2) С(-1;0;3), то вектор СА = (2+1=3; 4-0=4; 5-3=2) = (3; 4; 2), вектор ВС = (-1+3=2; 0-2=-2; 3-2=1) = (2; -2; 1).
Скалярное произведение а*c=ВС*СА a · c = ax · cx + ay · cy + az · cz = 6 - 8 + 2 = 0. Если скалярное произведение векторов равно нулю, то они перпендикулярны.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
АВ = √((Хв-Ха)²+(Ув-Уа)²+(Zв-Zа)²)= √9 = 3,
BC = √((Хc-Хв)²+(Ус-Ув)²+(Zс-Zв)²) =√9 = 3,
AC = √((Хc-Хa)²+(Ус-Уa)²+(Zс-Zа)²) = √16 = 4.
Периметр равен 3+3+4 = 10.
2. Векторы: a(2;-4;5) b(4;-3;5).
Находим модули векторов:
|a| = √(4+16+25) = √45 = 3√5,
|b| √(16+9+25) = √50 = 5√2.
cos(a∧b) = (2*4+(-4)*(-3)+5*5)/(√45*√50) = (8+12+25)/√2250 =
= 45/(15√10) = 3/√10 ≈ 0,948683.
3. Если даны координаты точек: А(2;4;5) В(-3;2;2) С(-1;0;3),
то вектор СА = (2+1=3; 4-0=4; 5-3=2) = (3; 4; 2),
вектор ВС = (-1+3=2; 0-2=-2; 3-2=1) = (2; -2; 1).
Скалярное произведение а*c=ВС*СА
a · c = ax · cx + ay · cy + az · cz = 6 - 8 + 2 = 0.
Если скалярное произведение векторов равно нулю, то они перпендикулярны.