Четырехугольник, вершинами которого являются середины сторон некоторого четырехугольника - параллелограмм Вариньона. Его стороны равны половинам диагоналей (и параллельны им), а углы - углам между диагоналями.
a=c =3/2 =1,5 (противоположные стороны параллелограмма равны) b=d =7/2 =3,5
∠α=37° ∠β=180°-37°=143° (сумма односторонних углов параллелограмма равна 180°)
------------------------------------------------------------------ Параллелограмм Вариньона образован средними линиями треугольников, основаниями которых являются диагонали четырехугольника.
ответ: Условие задачи – возможно, что намеренно – составлено некорректно.
Объяснение:
Если в параллелограмме известны стороны и высота, проведенная к одной из них, то длину второй высоты можно найти из его площади:
Ѕ=h•a, где h- высота, а - сторона, к которой она проведена.
S=NH•KL => NQ=S:ML.
НО!
MNKL - параллелограмм, => NK=ML=16.
Тогда оказывается, что в ∆ NKH гипотенуза NK меньше катета NL ( 16 < 24), что противоречит отношению сторон прямоугольного треугольника.
a=c =3/2 =1,5 (противоположные стороны параллелограмма равны)
b=d =7/2 =3,5
∠α=37°
∠β=180°-37°=143° (сумма односторонних углов параллелограмма равна 180°)
------------------------------------------------------------------
Параллелограмм Вариньона образован средними линиями треугольников, основаниями которых являются диагонали четырехугольника.