В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
annareain252
annareain252
19.04.2021 21:46 •  Геометрия

Площадь прямоугольного прямоугольника составляет 156,8 см ^ 2, одна стена в 3,2 раза короче другой. найдите пирамиду прямоугольного прямоугольника.​

Показать ответ
Ответ:
bintcliffe
bintcliffe
01.03.2023 22:12

Объяснение:

Задание 1

АВСД -параллелограмм , К-точка пересечения диагоналей .Диагонали точкой пересечения делятся пополам,  

Применим формулу середины отрезка для т К (3; -2; 1), если она лежит на АС, А (5; -4; 1). Найдем координаты т с.  

х(К)= ( х(А)+х(С )/2        у(К)= ( у(А)+у(С) )/2      z(К)= ( z(А)+z(С) )/2  2*х(К)= х(А)+х(С)         2*у(К)= у(А)+у(С)           2*z(К)= z(А)+z(С)  

х(С) = 2*х(К)-х(А)          у(С) = 2*у(К)-у(А)           z(Д) = 2*z(К)-z(А)  

х(С) = 2*3-5                     у(С) = 2*(-2)+4                 z(Д) = 2*1-1

х(С) = 1                             у(С) =0                               z(Д) =1

С(1 ; 0 ; 1)  

АС=√ ( (1-5)²+(0+4)²+(1-1)² )=√(16+16+0)=4√2

Задание 2

Найдем координаты  середины отрезка точки 0( центр окружности).

К (0; 3; 1), Н(-2;1;1) .

х(О)= ( х(К)+х(Н )/2       у(О= ( у(К)+у(Н) )/2     z(О)= ( z(К)+z(Н) )/2  

х(О)= (0-2 )/2                   у(О= ( 3+1 )/2               z(О)= ( 1+1 )/2  

х(С) = -1                          у(С) =2                          z(О) =1

О(-1 ; 2 ; 1)  

ОК=√ ( (0+1)²+(2-3)²+(1-1)² )=√(1+1+0)=√2

Задани 3

О( 0;0;0)  А (1; -2; 3).

ОА=√ ( (1-0)²+(-2-0)²+(3-0)² )=√(1+4+9)=√14

Задание 4

А (-1; 2; 2) и В (-2; 1; 4).

АВ=√ ( (-2+1)²+(1-2)²+(4-2)² )=√(1+1+4)=√6

0,0(0 оценок)
Ответ:
rabota777777ozj6qd
rabota777777ozj6qd
29.08.2020 03:14

– катеты; AB=c – гипотенуза.

Также в прямоугольном треугольнике сумма острых углов равна : .

Для прямоугольного треугольника также верна теорема Пифагора: .

Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.

Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника

Определение

Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе.

, .

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

, .

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.

, .

Связь катетов и гипотенузы, двух катетов через тригонометрические функции угла

С введённых понятий можно находить катеты или гипотенузу.

Например, из формулы: . Аналогично: .

Также можно получить формулу для связи длин двух катетов: .

Связь синуса и косинуса двух острых углов прямоугольного треугольника

При решении задач очень важно знать соотношения между синусом, косинусом и тангенсом острого угла прямоугольного треугольника.

Рассмотрим следующие две формулы: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Формула, связывающая тангенс с синусом и косинусом

Докажем теперь важную формулу, связывающую тангенс с синусом и косинусом:

Доказательство независимости значения тригонометрических функций от размеров треугольника

Доказательство

Запишем определение синуса и косинуса острого угла прямоугольного треугольника: , . Тогда: . Доказано.

Аналогично: .

Рассмотрим следующую важную задачу.

Задача

Даны прямоугольные треугольники . Кроме того, .

Доказать:.

Доказательство

(так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .

Отсюда получаем: .

.

.

Доказано.

Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.

Основное тригонометрическое тождество

Сформулируем и докажем одну из важнейших теорем, связывающих синус и косинус острого угла прямоугольного треугольника, – основное тригонометрическое тождество.

Основное тригонометрическое тождество: .

Примечание:

Доказательство

, тогда:  (при доказательстве мы пользовались теоремой Пифагора: ).

Доказано.

Рассмотрим пример, иллюстрирующий связь тригонометрических функций.

Решение примера

Дано:  – прямоугольный (), .

Найти:

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

ответ: .

На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Список литературы

Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.

Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фестиваль педагогических идей "Открытый урок" (Источник).

Xvatit.com (Источник).

Egesdam.ru (Источник).

Домашнее задание

№ 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.

Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.

Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .

Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота