Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
Площадь боковой поверхности состоит из 6-ти одинаковых равнобедренных треугольников со сторонами 13 и основанием 10 (так как шестиугольная пирамида правильная). Найдем площадь одной грани такой пирамиды. Будем ее искать по формуле
,
где a=10 – основание треугольника; h – высота треугольника. Так как треугольник равнобедренный, то его высота, проведенная к основанию a будет делить это основание пополам. Следовательно, высоту можно найти из прямоугольного треугольника с катетом 5 и гипотенузой 13 по теореме Пифагора:
и площадь одной грани
.
В шестиугольной пирамиде 6 таких граней, получаем площадь боковой поверхности:
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.
Площадь боковой поверхности состоит из 6-ти одинаковых равнобедренных треугольников со сторонами 13 и основанием 10 (так как шестиугольная пирамида правильная). Найдем площадь одной грани такой пирамиды. Будем ее искать по формуле
,
где a=10 – основание треугольника; h – высота треугольника. Так как треугольник равнобедренный, то его высота, проведенная к основанию a будет делить это основание пополам. Следовательно, высоту можно найти из прямоугольного треугольника с катетом 5 и гипотенузой 13 по теореме Пифагора:
и площадь одной грани
.
В шестиугольной пирамиде 6 таких граней, получаем площадь боковой поверхности:
.
ответ: 360.
Онлайн курсы ЕГЭ и ОГЭ