площадь трапеции это полусумма оснований умноженная на высоту. т.е (угол с 90 градусов) S=0.5(BC+AD)*АВ . найдём ВС. Проведём перпендикуляр СК из точки С к прямой АD. ВС=AD-КD. AD по условию равна 18, найдём KD из треугольника СКD: угол К=90 градусов (т.к СК перпендикулярно АD), угол D=45 градусов по условию, найдём угол С. угол С=180 градусов - угол D- угол К. угол С=180-45-90=45градусов. уголС=углуD значит треугольник СKD равнобедренный и это значит что СК=КD=ВА=10. ВС=АD-KD=18-10=8. S=0,5(ВС+АD)АВ=0,5(8+18)10=130
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
площадь трапеции это полусумма оснований умноженная на высоту. т.е (угол с 90 градусов) S=0.5(BC+AD)*АВ . найдём ВС. Проведём перпендикуляр СК из точки С к прямой АD. ВС=AD-КD. AD по условию равна 18, найдём KD из треугольника СКD: угол К=90 градусов (т.к СК перпендикулярно АD), угол D=45 градусов по условию, найдём угол С. угол С=180 градусов - угол D- угол К. угол С=180-45-90=45градусов. уголС=углуD значит треугольник СKD равнобедренный и это значит что СК=КD=ВА=10. ВС=АD-KD=18-10=8. S=0,5(ВС+АD)АВ=0,5(8+18)10=130
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.