В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danilpostnyh
danilpostnyh
03.11.2022 22:31 •  Геометрия

Площадь треугольника ABC равна 28 см. Точка D делит сторону Bc в отношении 3:1.считая от точки B. Найдите площадь треугольников ABD и ACD​

Показать ответ
Ответ:
buslabik1
buslabik1
14.04.2022 15:56

Пусть А - начало координат

Ось X - AB

Ось Y - AD

Ось Z - AA1

Координаты точки М - середины AA1

M(0;0;3/2)

Координаты точек плоскости

С(4;4;0)

D1(0;4;3)

Уравнение плоскости ( проходит через начало координат)

ax+by+cz=0

Подставляем координаты точек плоскости

4a+4b=0

4b+3c=0

Пусть с= -4 Тогда b=3 a= -3

Искомое уравнение

-3x+3y-4c=0

нормализованное уравнение плоскости

k=√ (3^2+3^3+4^2)= √34

-3x/√34+3y/√34-4z/√34=0

подставляем координаты M в нормализованное уравнение чтобы найти искомое расстояние

| -3*4/(2√34) | = 3√34/17

0,0(0 оценок)
Ответ:
МинаМина2003
МинаМина2003
03.09.2022 06:22

Нам даны три вершины вписанного четырехугольника: А, В и С. Надо найти четвертую вершину, удовлетворяющую условию задачи.

Свойства: У вписанного четырехугольника сумма протволежащих углов равна 180°. МAB+<BCМ = <АВС+<АМС=180°. (1)

Центр вписанной в четырехугольник окружности лежит на пересечении биссектрис его углов. (2)

Определение условий для построения

Пусть центр вписанной окружности О, тогда в четырехугольнике АВСО:

<АОС = 360° - <ВАО-<АВС-<ВСО или

<АОС = 360° - <АВС - ((1/2)*<МАВ + (1/2)<МСB)) (из 2).

Но из (1) ясно, что (1/2)*<МАВ + (1/2)*<МСB =90°.

Значит для удовлетворения условий задачи необходимо, чтобы

<АОС = 270° - <АВС.

а). Построение центра вписанной окружности.

Построим на отрезке АС треугольник АОС с углом

АОС = 270° - <АВС. Для этого:

1. Построим угол, равный (270 - <АВС)° и разделим его пополам.

2. Построим равнобедренный треугольник АРС с основанием АС и углами при основании АС, равными полученному в п.1 углу.

Построим описанную около треугольника АРС окружность и на пересечении этой окружности с биссектрисой угла АВС отметим точку О - центр вписанной окружности.

б). Найдем точку М: От луча АО отложим угол ОАК = углу ОАВ. => АО является биссектрисой утла КАВ. На пересечении луча АК и окружности, описанной около треугольника АВС, отметим искомую точку М.

Полученный четырехугольник АВСМ - вписанный и описанный.

Доказательство.

Поскольку все четыре вершины лежат на окружности, четырехугольник АВСМ вписанный.

<ABC=2*<ABO.

∠BОC = ∠AОC − ∠AОB = (270° − <ABC) − (180° − <BAO −<ABO) или

∠BОC =90° + <BAO −<ABO.

∠OCB = 180° − ∠OBC − ∠BOC или

∠OCB =180° − <ABO − (90 + <BAO − <ABO) = 90° - <BAO.‍

Но ∠BAO + ∠BCO = 180°,‍ тогда

∠OCМ = ∠BCМ − ∠BCO = (180° − <ABC) − (90° − <BAO) = 90° − <BAO = ∠BCO.

‍Итак, <OCМ=<ВCO => CO -‍ биссектриса угла C.

Значит, О -‍ точка пересечения биссектрис углов A, B‍ и C или центр вписанной окружности‍ четырёхугольника ABCМ, то есть четырехугольник АВСМ - описанный.

Что и требовалось доказать.

P.S. Порядок построения углов, равных данному и углов, равных половине данного, нахождение центра вписанной и описанной окружности, так же как и построение серединного перпендикуляра к отрезку и перпендикуляра из точки к прямой опущен, так как это стандартные построения.

Если угол АВС<90, то построение аналогично, за исключением того, что равнобедренный треугольник строится на основании АС с углами при основании равными (360-(270-<ABC))/2 = 90°+<ABC. В полуплоскости (относительно прямой АС), не содержащей точку В (смотри второе приложение).


Дано треугольник abc. найдите точку m такую, чтобы в четырехугольник abcm можно было вписать окружно
Дано треугольник abc. найдите точку m такую, чтобы в четырехугольник abcm можно было вписать окружно
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота