Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Дано:
SABC - пирамида
SО - высота
AB=8см
ã=45°
V-?
Объем пирамиды: V=1/3×Sосн×h
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Найдем объем:
V=1/3×16√3×8√3/3=128/3 см³