Площина α перетинає сторони AB і BC трикутника ABC у точках A1 і C1 відповідно. Сторона AC паралельна площині α. Знайдіть відношення АA1 до A1В якщо BC = 27 см, а BC1 = 6 см.
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
АВ и АС -отрезки касательных, проведенных из точки А к окружности с центром О. Найти АВ и АС, если АО=20 см, ∠ ВОС= 120.°
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОСА=90.
По свойству отрезков касательных АВ=АС .∠ОАВ=∠ОАС.
ΔОАВ=ΔОАС , как прямоугольный по гипотенузе и острому углу : АО -общая, ∠ОАВ=∠ОАС. В равных треугольниках соответственные элементы равны :∠ВОА=∠СОА=60°
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм
АВ и АС -отрезки касательных, проведенных из точки А к окружности с центром О. Найти АВ и АС, если АО=20 см, ∠ ВОС= 120.°
Объяснение:
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания, значит ∠ОВА=∠ОСА=90.
По свойству отрезков касательных АВ=АС .∠ОАВ=∠ОАС.
ΔОАВ=ΔОАС , как прямоугольный по гипотенузе и острому углу : АО -общая, ∠ОАВ=∠ОАС. В равных треугольниках соответственные элементы равны :∠ВОА=∠СОА=60°
ΔАВО-прямоугольный ,ОА=20 , sin60°=ВА/ОА , √3/2=ВА/20
ВА=10√3 .Значит ВА= АС=10√3 см.