Мета: домогтися засвоєння учнями змісту понять: плоский кут (у неявному вигляді), центральний кут, дуга кола, що відповідає даному центральному куту, градусна міра дуги кола, вписаний кут, — а також засвоєння учнями змісту властивості вписаного кута (про вимірювання вписаного кута).
Формувати вміння:
· відтворювати зміст вивчених тверджень;
· знаходити на готовому рисунку вивчені поняття;
· виконувати правильні зображення вивчених понять заданим описом;
· розв'язувати задачі із використанням вивчених тверджень на обчислення градусної міри вписаних та центральних кутів.
Тип уроку: застосування знань, умінь та навичок.
Наочність та обладнання: схема.
Хід уроку
I. Організаційний момент
II. Перевірка домашнього завдання
Перевірка правильності виконання письмової частини домашнього завдання відбувається під час перевірки зошитів із виконаною домашньою самостійною роботою. На уроці для зворотного зв'язку вчитель лише оголошує правильні відповіді (за необхідності видає учням правильні розв'язання для виконання роботи над помилками вдома).
ІІІ. Формулювання мети і завдань уроку
Для розуміння логіки вивчення матеріалу (як це правильно зауважують автори підручника) можна звернутись до схеми логічної побудови курсу геометрії 7 класу, а потім скласти відповідну схему для відображення логіки вивчення матеріалу у 8 класі. Результат може мати такий вигляд (див. схему).
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Объяснение:
Мета: домогтися засвоєння учнями змісту понять: плоский кут (у неявному вигляді), центральний кут, дуга кола, що відповідає даному центральному куту, градусна міра дуги кола, вписаний кут, — а також засвоєння учнями змісту властивості вписаного кута (про вимірювання вписаного кута).
Формувати вміння:
· відтворювати зміст вивчених тверджень;
· знаходити на готовому рисунку вивчені поняття;
· виконувати правильні зображення вивчених понять заданим описом;
· розв'язувати задачі із використанням вивчених тверджень на обчислення градусної міри вписаних та центральних кутів.
Тип уроку: застосування знань, умінь та навичок.
Наочність та обладнання: схема.
Хід уроку
I. Організаційний момент
II. Перевірка домашнього завдання
Перевірка правильності виконання письмової частини домашнього завдання відбувається під час перевірки зошитів із виконаною домашньою самостійною роботою. На уроці для зворотного зв'язку вчитель лише оголошує правильні відповіді (за необхідності видає учням правильні розв'язання для виконання роботи над помилками вдома).
ІІІ. Формулювання мети і завдань уроку
Для розуміння логіки вивчення матеріалу (як це правильно зауважують автори підручника) можна звернутись до схеми логічної побудови курсу геометрії 7 класу, а потім скласти відповідну схему для відображення логіки вивчення матеріалу у 8 класі. Результат може мати такий вигляд (див. схему).
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.