площини альфа і бета паралельні. через точку К, яка лежить між цими площинами проведено прямі а і b, які перетинають площину альфа у точках А1 і В1 , а площину бета у точках А2 і В2. знайдіть довжину відрізка А2В2 ,якщо А1, В1 = 12 см і ВК1 : ВВ1 = 2 :3
1)Периметр ромба равен 4*сторона
сторона= 52\4=13 см
Площадь ромба равна произведению квадрата стороны на синус угла между сторонами
отсюда синус угла =площадь робма разделить на квадрат стороны
sin A=120\(13^2)=120\169
Так как угол А -острый,то cos A=корень(1-sin^2 A)=корень(1-(120\169)^2)=
=119\169
По одной из основных формул тригонометрии
tg A=sin A\cos A=120\169\(119\169)=120\119
ответ:120\169,119\169,120\119.
2)
Катеты треугольника относятся друг к другу как 9 к 40.
Пусть длина одного катета 9х, тогда второго 40х.
По теореме пифагора квадрат катетов равен квадрату гипотенузы
(9х) в квадрате + (40х) в квадрате = 82 в квадрате
81 х^2 + 1600 х^2 = 6724. Отсюда х^2 = 4.
х=2.
один катет 9х=18 см
второй катет 40х=80 см
3)
Боковые стороны: (36-10)/2=13
Высота h=корень(169-25)=12
tga=5/12 sina=5/13 cosa=12/13.
4) cos - отношение прилежащего( в данном случае неизвестного) катета к гипотенузе, пусть гипотенуза - х, тогда катет 24х / 25. по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов x^2=14^2+(24x / 25)^2, отсюда х=50, а второй катет равен 48
ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.