Площини α і β паралельні. Через вершини ∆АВС, який знаходиться у площині α, проведені паралельні прямі, які перетинають β в точках А 1 , В 1 і С 1 відповідно. Знайдіть периметр ∆А 1 В 1 С 1 , якщоВС=АС=15 см, АВ : ВС=8 : 5.
Пусть трапеция АВСD и ее диагонали пересекаются в точке О. Если трапеция является равнобедренной, то прямая, которая проходит через середины оснований, перпендикулярна основаниям и длины диагоналей равны(свойство). Тогда прямоугольные треугольники АОD и ВОС (прямые углы АОD и ВОС - дано) равнобедренные и углы прилежащие к гипотенузам равны 45°. Следовательно, высоты этих треугольников ОН=АD/2, а ОР=ВС/2. Сумма этих высот равна высоте трапеции h. Площадь трапеции равна: S=(AD+BC)*h/2. AD+BC=36 (дано). Подставим в формулу площади значение h=OH+ОP=(1/2)(AD+BC) и получим:S=(AD+BC)*(AD+BC)/4 или 36*36/4=324.
1)Полусумма диагоналей равна 70/2= 35/см/, половина одной диагонали пусть х, тогда половина другой (35-х), по теореме Пифагора х²+(35-х)²=25²
х²+1225-70х+х²-625=0
2х²-70х+600=0; х²-35х+300=0, откуда по теореме, обратной теореме Виета, х₁=15, х₂=20
Значит, если одна половина 15, то другая 20, и наоборот, если одна 20, то другая 15
Диагонали, стало быть, равны 40см и 30 см. Площадь ромба равна
40*30/2=600/см²/
2) Меньшая бок. сторона - она же и высота трапеции, чтобы найти среднюю линию, достаточно найти другую бок. сторону - большую, а потом их полусумму, поскольку сумма боковых сторон равна сумме оснований, т.к. в эту трапецию можно вписать окружность. Опустим из вершины тупого угла на нижнее большее основание высоту, получим прямоугольный треугольник, с углом в 60°, против него лежит катет 8√3см,
Значит, гипотенуза, она же и большая бок. сторона, равна 8√3/sin60°=8√3/(√3/2)=16/cм/, значит, полусумма оснований равна
(8√3+16)/2=(4√3+8)/см/, высота трапеции равна 8√3см, площадь
1)Полусумма диагоналей равна 70/2= 35/см/, половина одной диагонали пусть х, тогда половина другой (35-х), по теореме Пифагора х²+(35-х)²=25²
х²+1225-70х+х²-625=0
2х²-70х+600=0; х²-35х+300=0, откуда по теореме, обратной теореме Виета, х₁=15, х₂=20
Значит, если одна половина 15, то другая 20, и наоборот, если одна 20, то другая 15
Диагонали, стало быть, равны 40см и 30 см. Площадь ромба равна
40*30/2=600/см²/
2) Меньшая бок. сторона - она же и высота трапеции, чтобы найти среднюю линию, достаточно найти другую бок. сторону - большую, а потом их полусумму, поскольку сумма боковых сторон равна сумме оснований, т.к. в эту трапецию можно вписать окружность. Опустим из вершины тупого угла на нижнее большее основание высоту, получим прямоугольный треугольник, с углом в 60°, против него лежит катет 8√3см,
Значит, гипотенуза, она же и большая бок. сторона, равна 8√3/sin60°=8√3/(√3/2)=16/cм/, значит, полусумма оснований равна
(8√3+16)/2=(4√3+8)/см/, высота трапеции равна 8√3см, площадь
8√3*(4√3+8)=(32*3+64√3)=(96+64√3)/см²/