Пусть, дана пирамида АВСД,причем, АВС-равносторонний треугольник со стороной 4 см. Опустим из т.А перпендикуляр на ВС, отметим т.М. В равностороннем треугольнике это и высота, и медиана треугольника, и бисектриссаугла А. Вершина пирамиды Д будет иметь проекцию на плоскости АВС в т.О. Причем, т.О будет совпадать с серединой отрезка АМ. Поскольку АВС-равносторонний, то АМ=√(АС²-МС²)=√(16-(4/2)²)= =√(16-4)=√12=2√3(см) Тогда АО=АМ/2=√3(см) Поскольку все ребра пирамиды, в том числе и АД, имеют наклон к плоскости основания 45°, то ДО=АО=√3(см) Площадь треугольника АВС равна S=ВС*АМ/2=(4*2√3)/2=4√3(см²) Объем пирамиды равен V=S*ДО/3=(4√3*√3)/3=4см³ ответ: 4см³
Основанием правильной пирамиды служит равносторонний треугольник со стороной 4 см. Каждое боковое ребро пирамиды составляет с плоскостью основания угол 45º.
Найти площадь полной поверхности пирамиды.
Объяснение:
1)S(полн.пир)=S(осн)+S(бок)
S(осн)=S( прав.тр)=(а²√3)/4 , где а-сторона основания,
S(бок)=1/2 Р(осн)*d , где d-апофема.
2) Высота пирамиды МО , в правильной пирамиде, проецируется в центр основания, точку пересечения медиан . Пусть ВН⊥АС.
В ΔАВС: a₃=R√3 , 4=R√3 , R=4/√3 (см) ⇒ r=ОН=2/√3 (см) по т. о точке пересечения медиан.
Т.к по условию ∠МВО=45°, то ΔМВО-прямоугольный , равнобедренный. Значит ВО=МО=4/√3 см.
ΔМОН-прямоугольный, по т. Пифагора МН=√( ОН²+ОМ²),
МН=√( (2/√3)²+(4/√3)²)=2√(5/3) (см) ⇒ d=2√(5/3) см.
Опустим из т.А перпендикуляр на ВС, отметим т.М. В равностороннем треугольнике это и высота, и медиана треугольника, и бисектриссаугла А.
Вершина пирамиды Д будет иметь проекцию на плоскости АВС в т.О. Причем, т.О будет совпадать с серединой отрезка АМ.
Поскольку АВС-равносторонний, то АМ=√(АС²-МС²)=√(16-(4/2)²)=
=√(16-4)=√12=2√3(см)
Тогда АО=АМ/2=√3(см)
Поскольку все ребра пирамиды, в том числе и АД, имеют наклон к плоскости основания 45°, то ДО=АО=√3(см)
Площадь треугольника АВС равна
S=ВС*АМ/2=(4*2√3)/2=4√3(см²)
Объем пирамиды равен
V=S*ДО/3=(4√3*√3)/3=4см³
ответ: 4см³
Основанием правильной пирамиды служит равносторонний треугольник со стороной 4 см. Каждое боковое ребро пирамиды составляет с плоскостью основания угол 45º.
Найти площадь полной поверхности пирамиды.
Объяснение:
1)S(полн.пир)=S(осн)+S(бок)
S(осн)=S( прав.тр)=(а²√3)/4 , где а-сторона основания,
S(бок)=1/2 Р(осн)*d , где d-апофема.
2) Высота пирамиды МО , в правильной пирамиде, проецируется в центр основания, точку пересечения медиан . Пусть ВН⊥АС.
В ΔАВС: a₃=R√3 , 4=R√3 , R=4/√3 (см) ⇒ r=ОН=2/√3 (см) по т. о точке пересечения медиан.
Т.к по условию ∠МВО=45°, то ΔМВО-прямоугольный , равнобедренный. Значит ВО=МО=4/√3 см.
ΔМОН-прямоугольный, по т. Пифагора МН=√( ОН²+ОМ²),
МН=√( (2/√3)²+(4/√3)²)=2√(5/3) (см) ⇒ d=2√(5/3) см.
3) S(бок)=1/2*2√(5/3) *12= 12√(5/3) (см²) .
S(осн)=(4²√3)/4=4√3 ( см²)
S(полн.пир)=4√3 +12√(5/3)=4√3 +4√15 (см²)