Плоский кут при вершині правильної чотирикутної піраміди до- рівнює 45°, бічне ребро — 8 см. Обчисліть площу 8 см. Обчисліть площу бічної поверхні піраміди. А) 32N2 см2, Б) 642 см 2, В) 32 см 2; г) 64 см2.
Через две пересекающиеся прямые можно провести ровно одну плоскость. Две прямые из условия лежат в некоторой плоскости a. Пусть третья прямая пересекает каждую из них и не проходит через точку A их пересечения. Тогда у третьей прямой есть хотя бы две общие точки с плоскостью a (как раз эти точки пересечения). Известно, что прямая, имеющая с плоскостью хотя бы две общие точки, лежит в этой плоскости. Тогда третья прямая также лежит в а. Следовательно, какую бы прямую, пересекающую две данные прямые и не проходящую через А мы ни выбрали, она будет целиком лежать в плоскости а, что и требовалось доказать.
Так как трапеция равнобедренная, то углы при её основании равны. Что при большем, что при меньшем основании. Тогда получаем 2 пары углов: одна пара равных острых углов (при большем основании), вторая пара равных тупых углов (при меньшем основании).
Пусть α - больший угол, β - меньший (для определенности)
Сумма углов четырехугольника равна 360°
α+α+β+β=360° ⇒ 2(α+β)=360° ⇒ α+β=180° (это же можно было сразу сказать, если учесть, что основания параллельны, а боковая сторона - секущая, а α и β являются односторонними углами, сумма которых, как известно, равна 180°).
Так как трапеция равнобедренная, то углы при её основании равны. Что при большем, что при меньшем основании. Тогда получаем 2 пары углов: одна пара равных острых углов (при большем основании), вторая пара равных тупых углов (при меньшем основании).
Пусть α - больший угол, β - меньший (для определенности)
Сумма углов четырехугольника равна 360°
α+α+β+β=360° ⇒ 2(α+β)=360° ⇒ α+β=180° (это же можно было сразу сказать, если учесть, что основания параллельны, а боковая сторона - секущая, а α и β являются односторонними углами, сумма которых, как известно, равна 180°).
α=180°-72°=108°
То есть 2 угла по 108°, 2 угла по 72°.
ответ: 72°, 72°, 108°, 108°.