<BAD=90, а <ADB=45 по условию, значит <ABD=180-90-45=45, а значит △ABD - прямоугольный равнобедренный. Значит AB=AD=10.
Также по условию <BAC=<ADB=45, значит <CAD=<CAB=45. Рассмотрим тр-ки △ABC и △ADC. У них AC - общая, AB=AD, <CAD=<CAB, значит они равны по 1му признаку. =>BC=DC=x, <ACB=<ACD=30, значит △CBD - равнобедренный, а его <BCD=60. Но тогда 2 оставшихся угла тоже равны 60, а △CBD на самом деле равносторонний, и BC=DC=BD.
Когда нам дано, что подобны треугольники, то, чтобы записать пропорциональность сторон, имеется два 1)смотрим на рисунок и определяем пропорциональность исходя из признака. 2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы. Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым Т.к. подобны треугольники WMF и WAV, то записывается это так: WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню). Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон: WM/WA = WF/WV WM=WA*WF/WV = 26*19/24,7 = 20(дм). Теперь определим признак подобия. Их всего 3: 1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. 2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны. 3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет. Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный. ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)
10√2
Объяснение:
<BAD=90, а <ADB=45 по условию, значит <ABD=180-90-45=45, а значит △ABD - прямоугольный равнобедренный. Значит AB=AD=10.
Также по условию <BAC=<ADB=45, значит <CAD=<CAB=45. Рассмотрим тр-ки △ABC и △ADC. У них AC - общая, AB=AD, <CAD=<CAB, значит они равны по 1му признаку. =>BC=DC=x, <ACB=<ACD=30, значит △CBD - равнобедренный, а его <BCD=60. Но тогда 2 оставшихся угла тоже равны 60, а △CBD на самом деле равносторонний, и BC=DC=BD.
Найдём в △ABD гипотенузу BD:
BD²=AD²+AB²=10²+10²=200
x=BD=10√2
1)смотрим на рисунок и определяем пропорциональность исходя из признака.
2)если нам известно, что подобны такие-то треугольники, то это можно записать исходя из того, как записаны буквы.
Т.к.никакого рисунка у нас нет и признак нам еще придется определить, то будем пользоваться вторым
Т.к. подобны треугольники WMF и WAV, то записывается это так:
WM/WA = MF/AV = WF/WV (заметьте здесь закономерность, если не заметили - спросите - объясню).
Возьмем первую и третью дробь, т.к. там нам известно самое больше количество сторон:
WM/WA = WF/WV
WM=WA*WF/WV = 26*19/24,7 = 20(дм).
Теперь определим признак подобия. Их всего 3:
1)Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
2)Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны.
3)Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого, то такие треугольники подобны
Ну 3 сразу отпадает, т.к. такого варианта ответа даже нет.
Здесь подходит второй признак, т.к. нам дано по две стороны в каждом треугольнике, которые пропорциональны, значит скорее всего угол будет и там, и там равный.
ответ: 4.
С вами был lovelyserafima, удачи! Не забывайте отмечать лучшим и оценивать ответ, если он вам понравился) Будут еще вопросы - задавайте;)