Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.
Сначала находим сторону BC по теореме Пифагора она равна корень из(144(12 в квадрате)+25(5 в квадрате))=> BC= 13 см Находим сторону AH(H это пересечение высоты со стороной AC) по теореме-квадрат высоты в прямоугольном треугольнике это произведение отрезков, на которые делится гипотенуза. => AH=144/5=28.8 Отсюда по теореме Пифагора находим сторону AB, она равна корень из(28.8 в квадрате минус 12 в квадрате)=> AB=31.2 Косинус - это отношение прилежащего катета к гипотенузе. Косинус угла A- это AB/AC=0.923076923(можете округлить)
ответ: Да, является
Объяснение: Рассмотрим треугольники АЕД и BFC.
Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.
корень из(144(12 в квадрате)+25(5 в квадрате))=> BC= 13 см
Находим сторону AH(H это пересечение высоты со стороной AC)
по теореме-квадрат высоты в прямоугольном треугольнике это произведение отрезков, на которые делится гипотенуза. => AH=144/5=28.8
Отсюда по теореме Пифагора находим сторону AB, она равна корень из(28.8 в квадрате минус 12 в квадрате)=> AB=31.2
Косинус - это отношение прилежащего катета к гипотенузе.
Косинус угла A- это AB/AC=0.923076923(можете округлить)