Плоскость а прикасается к шару в точке А. Точка в принадлежит плоскости о и удалена от точки А на 3√5 см. Найдите расстояние от точки В до центра шара, если радиус шара равен 3 см.
Рассмотрим боковую грань, апофема разбивает ее на два прямоугольных треугольника с одним из катетов L и острым углом a/2. Тогда другой катет будет равен L*tg(a/2). Этот катет равен половине стороны основания, тогда сторона квадрата в основании равна 2L*tg(a/2), и площадь основания равна 4L^2*tg^2(a/2). Площадь боковой грани равна половине произведения основания этой грани на высоту, то есть Sгр=L^2*tg(a/2). Тогда Sбок=4Sгр=4L^2*tg(a/2). Sполн=Sосн+Sбок=4L^2*tg^2(a/2)+4L^2*tg(a/2)=4L^2tg(a/2)(1+tg^2(a/2))
Равносильно - найти сторону равностороннего треугольника, если радиус описанной окружности 35*корень(3).
Такое хитромудрое решение :))) радиус ВПИСАННОЙ окружности = 35*корень(3)/2,
половина стороны равна (35*корень(3)/2)*корень(3) = 105/2, сторона 105 :)))
На самом деле я воспользовался кучей особенностей равносторонего треугольника, а можно сразу записать по теореме синусов a = 2*R*sin(60) = 105.
Можно сказать, что высота равна (3/2)*R (опять используется совпадение центров), а сторона равна h/(корень(3)/2); ответ будет одинаковый.
а = 105.
Рассмотрим боковую грань, апофема разбивает ее на два прямоугольных треугольника с одним из катетов L и острым углом a/2. Тогда другой катет будет равен L*tg(a/2). Этот катет равен половине стороны основания, тогда сторона квадрата в основании равна 2L*tg(a/2), и площадь основания равна 4L^2*tg^2(a/2). Площадь боковой грани равна половине произведения основания этой грани на высоту, то есть Sгр=L^2*tg(a/2). Тогда Sбок=4Sгр=4L^2*tg(a/2). Sполн=Sосн+Sбок=4L^2*tg^2(a/2)+4L^2*tg(a/2)=4L^2tg(a/2)(1+tg^2(a/2))