Плоскость параллельна стороне ac в треугольнике abc пересекает его стороны ab и bc в точках a1 и c1 соответственно. Известно что ac=6 a1c1=2 aa1=5 cc1=7. Найдите стороны ab и bc.
Высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой. Длинную диагональ основания можно найти по теореме косинусов. Знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен 180-60=120° Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. a2 = 32 + 52 - 2bc·Cos(120) a²=34-30·(-0,5)=49 a=7 Теперь очередь дошла до высоты параллелограмма. h²=25²-7²=574 h=24 cм
ВОТ ПРИМЕР:
сделаем построение по условию
дано куб ABCDA1B1C1D1
все стороны равны - обозначим - а
точки K,L,M - середины соответствующих ребер AA1 , A1B1, A1D1 , значит делят ребра пополам на отрезки а/2
все углы в кубе прямые =90 град , значит ∆A1KM ∆A1ML ∆A1LK - прямоугольные
по теореме Пифагора
LM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LM = a/√2
KM^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; KM = a/√2
LK^2 = (a/2)^2 +(a/2)^2 = 2(a/2)^2 =a^2/2 ; LK = a/√2
получается , что все стороны в ∆MLK равны LM=KM=LK=a/√2
значит ∆MLK - равносторонний
в равностороннем треугольнике все углы равны 60 град
ОТВЕТ угол MLK =60 град