Плоскость параллельная оси цилиндра отсекает от окружности дугу в 60 градусов образующая цилиндра равна 10√3 расстояние от оси до секущей плоскости равна 2 см найти площадь сечения (подробно)
Пусть первый катет-х, второй-у, c-гипотенуза по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов) с²=у²+х² система х-у=14 26²=у²+х² из первого уравнения выразим х х=14+у подставим во второе 26²=у²+(14+у)² 676=у²+14²+2*14*у+у² 676=2у²+196+28у 676-2у²-196-28у=0 480-2у²-28у=0 (делим все на (-2)) у²+14у-240=0- это приведенное уравнение по т.виета y₁+y₂=-14 y₁*y₂=-240 y₁=-24 (не подходит, <0) y₂=10 cm подставим то, что у нас получилось в подстановку х=14+10 х=24 cm площадь (произведение катетов деленное на 2) S=xy/2 S=24*10/2 S=120 cm²
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
по т. пифагора (квадрат гипотенузы равен сумме квадратов катетов)
с²=у²+х²
система
х-у=14
26²=у²+х²
из первого уравнения выразим х
х=14+у
подставим во второе
26²=у²+(14+у)²
676=у²+14²+2*14*у+у²
676=2у²+196+28у
676-2у²-196-28у=0
480-2у²-28у=0 (делим все на (-2))
у²+14у-240=0- это приведенное уравнение
по т.виета
y₁+y₂=-14
y₁*y₂=-240
y₁=-24 (не подходит, <0)
y₂=10 cm
подставим то, что у нас получилось в подстановку
х=14+10
х=24 cm
площадь (произведение катетов деленное на 2)
S=xy/2
S=24*10/2
S=120 cm²
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20